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ABSTRACT:

The kinematic aspect of surveillance-vvasion is studied with a
deterministic differential game model. The model conslders a Pursuer
with limitations on both speed and maneuverability (turning radius)
and an Evader with only a speed limitation. Conditions are developed
for the Pursuer to be able to maintain contact indefinitely. The
results of this research modify previously published results on this
problem. Shortcomings of previocus work are discussed including the
fact that the surveillance-evasion problem has not been solved for an
arbitrary detection region. Related parts of the solution te Isaacs'
homicidal chauffeur game and its one-sided counterpart are developed

_as backeround material, Some known allocation of effort in search
-~ #theory results are derived by the Pontryagin maximum principle.
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1. Iantroduction

This report documents research findings for the time period 30

March 1970 to 19 June 1970 under support of NR 276-027. This report

[T 4

discusses applications of the theory of differential games to pursuic

and evasion problems of Naval warfare., In particular, we conaider

the problem of surveillance-evaslon. A companion report [47] discusses .

other research findings of the contract period with respect to tactical .

allocation problems. R
The goal of this research is to determine the circumstances
““under which an evader can outmaneuver a pursuer to escape as a function

—.of maneuverability. The solution of this problem leads to conditioens

-for a tracker (destroyer) to be able to keep a hostile vehicle (sub-

marine) under constant surveillance. The original approach was to

‘urvey the previously published work in this field and to attempt to

‘extend these modelling efforts. Detailed analysis of past work [14]

i)

jﬁas uncovered several flaws in its mathematical development, and,
hence, the current work has concentrated on establishing a firmer
gf;fémthematical basis for the surveillance-evasion aspect of the more
general problem of pursuit and evasion. This work has created a broad
base for future possible extensions.

Warfare 1s characterized by decisions being made on the dynamics
of combat over a period of time by the antagonists towards conflicting
goals. The creation of game theory by J. von Neumann (48], [49]
{although anticipated by E. Borel [21]) has had a major impact on the

modelling of conflict situations. The optimization of dynamical systems
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has been studied under the calculus of variations since the 17th
century. However, in cases where inequallty constraints are present
in the model, these powerful classical technlques require intricate
modifications. In this environment, the almost simultaneous develop-

. ment iu the early 1950's of differential games by R. Isaacs (26], [27],
(28], [29] and the Pontryagin maximum principle by the Russian mathe-
matician L. Pontryagin [43] has been enthusiastically received by

.&military operations research workers. It seems apprOpr;ate to discuss

u;these techniques briefly.

L . R

a. Differential Games

'Q_%f R. Isaacs was the original developer of differential games in

' “#the environment of RAND in the early 1950's [26], [27], 28], [29]. » T

'Aglthough_not acknowledged in his book, he applied Bellman's ideas of

Qynamic_programming [5] to a limiting case of a multi-mcve discrete

; fgame. A briel sketun of the history of the later mathematical develop-

7hﬁent of differential games up through 1965 is contained in {22]). Isaacrs
published a major work in 1965 [30]). Y. C. Ho [23] has reviewed Isaacs's

"~work and discussed its relationship to deterministic optimal control theory

in an excellent review of the book Differential Games.

The subject referred to as differential games may in che future
be called zero-sum deterministic differential games within the emerging
framework of 'generalized control theory" {24], [25]. It seems appro-
priate therefore to review briefly the characteristics of such ¢
optimization models. We consider two-controllers who manipulate their
own control variables in a dynamic system whose behavior is described

by a system of differential equations. Each controller has his cwn

;
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criterion function, but these are related by summing to a constant.
-Hence, one man's loss is the other's gafa. There 1s one information

set and it is perfect in the sense that all past history is known,

opponent's capability, =tc., except the Instantanevus strategy of the

opponent., It 1s within the tramework of rhese general assumptions
"that idealized surveillance-evasion tactics will be developed.

The work of lsaacs has been the major source of ideas for ther

'-Currqnt research. Although recent work has been more mathematically

precise [6], (7], the worked examples in Isaacs book appear to this

‘researcher to be at least a decade ahead of the development of those

‘}h,who,place a premium on precision. Each new application of differential

V*gamglcheory appears to motivate several new concepts.

b. Generalized Control Theory

';_: It seems appropriate to discuss the general problem of pursuit

and evasion within the broader framework of "generalized control theory."

As noted above, two notable deficiencles of the differential game models

to be considered in this work are: (1) perfect information is assumed

and (2) the model is deterministic. Hence, we will address only the
kinematic aspects of survelllance-evasion and will not consider deception

tactics.

Within the past severs.] years a probabilistic control theory
has emerged, W. Fleming [19] recently has reviewed this field and
provided an extensive (and biisic) bibliography. Willman [50] and Behn
and Ho [4] have extended thesie concepts to conflicting dynamical systems.

Such an approach applied to the problem at hand would consider detection

probabilities and that the players have only imperfect knowledge of the




state of the system, i.e., there is "noise" superimposed on the signal

as to the location of one's opponent. Such extensions are beyond the

dodiaba - snminedl] W A,

scope of the current modelling effort, but are noted for possible future
extensions. The deterministic model is complementary to the stochastic
model and should provide insight into the latter.

c. Application to Problems of Naval Warfare

e bt sl

We have seen that differential games provide a model for optimizing
conflicting dynamical systems over a period of time. There are numerous © E

applications of such models to problems of Naval warfare: :

(1) interception of enemy missiles by ABM's,
.~ {2) allocation of Naval fire support to various targets,

(3) allocation of Naval airpower to ground-support and
strategic targets,

o (4) allocation of effort in searching for targets, 5 ? ;
(5) survelllance and tracking of hostile vehicles.
These various applications are noted, since the solutions of all these o ”ti
problems involve the use of the same mathematical technique, differen-
tial game theory.
7 In the current research, we study the problem of surveillance~

evasion, in which the "pursuer" attempts to maintain contact with an

"evader" who attempts to break coatact by moving outside the detection

capability of the pursuer, The mathematical structire of this problem

is closely related to that of pursuit and evasion problems: in sur-

velllance-evasion the problem occurs, for example, within a circle and

terminates on its boundary, while in pursuit and evasion the problem v
is exterior to a circle. This research has uncovered some subtle differ-

ences, however.
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The discrete models of multi-move discrete games [5] (generaliza-
tion of dynamic programming) may be used to study these phenomena under
less restrictive assumptions. The value of the differential game
approach 1s that it leads to explicit expressions relating the various
system parameters. Thus, the basic structure of optimal policies and
tradeoffs between system parameters may be explicitly exhibited.

The mathematical techniques of control theory show great promise
for providing insight into optimizing the dynamics of Naval warfare.
Many previous analyses involving classical variational methos may be
more eacily done and extended by their use. As an example cf this,

-—-de Guenin's extension [13] of Koopman's results [38] on the optimum

distribution of searching effort is derived in Appendix E by use of th




1l. REVIEW OF PERTINENT LITERATURE

The published literature was reviewed to find out what had beeﬁ
. done on the topic oi surve;}lancg~g§agion in order to avoid Quplica{g .
.tion cf research effort. ~We 40 ;o; attempt a comprehensivg review of
" the 11°°'§£9F°' since that waq(ndﬁlthe purpose of this research. Huw-

'ever,_some major works are hignlighted . Literature was revieved in two

ubject areas: search theory and differential games.

J. Dobbie [15] has published a rather comprehensive survey of

ssearch theory in 1968. He iadicated that the enly published work ou

i

“#the tracking Qﬁera;tqn in the open literature was by Dobbie himself

J14]. The 1966 paper by Dobbie considers the kinematic aspects of

%§utveillan;e-eyésion. This paper is the primary basis for the present

!f:,ireseqrch. Dobbie considers a sequence of problems, formulated as differ-

" “entlal games: surveillance-evasion for a circular detection region of
the pursuer, tracking for an arbitrary detection region, and two models

leyin which recontact is possible by the pursuer., The content of this paper

; has evolved into operational Navy doctrine [16].

A mnre”éx;ensive search of the literature did not yield any further work

i on tracking operations in the open literature. The 1966 survey by
g Enslow (18] and S. Pollock's selected bibliography [42] were consulted
in this respect. Both these surveys were consulted by Dobbie for his
survgyvarticle [15]. A recent effort at the University of Michigan [41]
was also ex&mined-and did not yleld any new references on the tracking
. prqbleq, \
| The differential game literature was consulted for general mathe-

matical background and to see if applications to tracking could be found,
: X v - T -{ ; :

\
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- The applications litevature was considered of prime importance rathew
" than the deQelopment of the mathematical thecry. Isaaca's 1965 bock
Z:-130] remaine the chief source of examples and insight into.technical

! s n'quustions related to sulving actual problems. His terminclogy is non-

I;

istandard to control theorists, little use or refurence to the classical

-Fvariatlonal methods_l is made, but he does provide an extensive theory
- ihaturally motivaﬁea through examples. Ilsaacs homicidal chauffer problem
Tis basic to pursuit and evasion studies. He had also considered
ﬁ;;;QAegihe tracking problem while ét CNA [31]. This reference does not contain

any analysis and the condition developed for surveillance to be main-

ained is incorrect (as is that developed by Dobbie [14])). Isaacs's
ketches of the problem indicate that he did note, however, the termina-
ion of the barrier.

L. Berkovitz's paper [6] presents an extremely rigorous mathe-

matical development of differential game theory but presents no examples

-.and does not consider most of the significant aspects required to solve

wspecific problems. Blaquiédre, Gérard, gnd Leitman [8] have recently
%published a book on differential games. This book develops the theory
-from a geometric point of view and is an extension of the geometric
---approach to control theory problems developed by these authors over the
past five years. This previous work is accessable through the biblio-
~graphy in this book. Although some examples are given, they don't
appear to be reprasentative of a broad experience in applications as

" —-:-is the case of those in Isaacs book. This book is not written for one

not already acquainted with the theory and is not useful for the novice.
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The intiwmate conpnection between differential games and control
theory is pointed out in numerous places (see, for example (6], (23],
[30]). 1In view of this relationship, much of the optimal control theory
can be broug to bear on differential game problems. An excellent
. ¥eview of deterministic optimal control theory with an extensive

“bibliography is by Athans [1]. An excellent, concise discussion of the

~-relationships between control theory and differential games is contained
in the review of Isaacs book by Y. C. Ho [23]. Other articles which

contain useful review material are by Ho, Bryson, and Baron [22] and

lglao Sarms and Ragade [45]. Athans and Falb [2] have written an excellent

.-.- introductory text. The excellent book by Bryson and Ho [9], besides

-~ #being an easily understood, lucid introduction to the field, contains R

many advanced topics including a briei introduction to differential

R

The Russians have done extensive research on optimal control/

o “differential games over the last decade {3}. An excellent survey article

_ delineating numerous fields of application and with an extemsive biblio-

;éraphy of original Russian research papers is by Simak>va [46]. Y. C.
Ho, one of the best qualified individuals to survey the current Western
" .gtate-of-the-art, has documented current developments (theoretical and
.in applications) [25]. An important question in pursuit and evasion

problems is '"When can capture occur?" Isaacs [30] has developed several

(equivalent) criteria for determining the useable part of the terminal

surface. Recently, L. Meier [40]} has proposed 4 new geometrical criterion

-

from his study of ABM interception of re-entry vehicles.
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111. The Surveillance-Evasion Problem

We consider an idealized model for the problem of 5 tracker
(for example, a destroyer) keeping a hostile vehicle (for example,
a submarine) under constant surveillance. The maneuverabllities (i.e.,
maximum speed and turning capabilities) of the two vehicles lead to the
appropriate conditions. When these conditions are met, the Ppursuer can
keep the Evader under close surveillance. The Evader cannot do anything
to break contact and prevent this "tracking" or 'tailing." We consider
%hn extremely idealized model with perfect information on the location

of the enemy for both antagonists and a circular, "“cookie-cutter"

- = etection region for the Pursuer.

b Sy

a. Statement of the Problem.

We consider the same model used by Dobbie (14), which is an exten-

‘sion of lsaacs's model [30]. There are several flaws in the earlier

”fi¥€ ;ﬁnathematical development of Dobbie, which lead ;o an incorrect condition
for surveillance to be maintained and an incorrect analysis for surveil-
;lance—evasion with arbitrary detection regions. The latter has the
important implication that the involute tactic [16] may not be optimal
- for holding contact in real world situations where sonar capabilities

- . 'generate a non-circular detection region. It should also be noted that

the brief work by Isaacs on this problem also yielded the wronr- surveil-
lance condition. Hence, the purpose of the present research is to set
such analysis on a firmer mathematical basis.

In the model the Pursuer ig faster than the Evader, who does,

however, possess an advantzge in turning capability. We assume a

s bt i i i

T
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circular "cookle-cutter" detection region for the Pursuer, who detects

the Evader with probability one when they are less than a distance d
apart. The goal of the Evader is to break contact as gquickly as possible

by moving out of the circular detection region of the Pursuer, who

-
A 611 e
froep .. - it O

_ attempts to maintain contact as long as possible. We define the follow-
- ing notation: !

-subscripts: 1 refers to Pursuer, 2 refers to Evader

= Pursuer's speed with maximum w; ) .

= Evader's speed with maximum Wy

= minimum turning radius of the Pursuer

= fraction of maximum course curvature employed by Pursuer
(¢ = -1 corresponds to left turn with minimum turning radius)

i e 2 o

o=+ ¢ = Evader's heading relative to that uf Pursuer

Rk i .

d = radius of Pursuer's detection vregion ¢ é
- - E—

T = time for Evader to escape (reach circle of radius d from - e DB

Pursuer) - : Bl HEEA 2 B 1

5

‘Thus, the probiem facing the Pursuer is

St . . E
‘max min | dt, ' ’ i‘

subject to the equations of motion of the two vehicles. It is conven-
ient to adopt a relative coordinate system for two reasons: (1) the
dimension of the problem is reduced and (2} such a coordinate system

is standard in Naval operations. In this relative system the Pursuer

e ey

is located at the origin and has a verticle heading. Thus the coordinate

system is "carried by the Pursuer.'" In this system the problem is
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4 b, Games of Dagree and Games of Kind. Loy
i xy R 3 In this section we discuss the concepts of a, game of degree and
: - ; (BT i
. "a,game of kind. The purpose of this discussion is to explain that in
/ o E
order to solve a game of kind one must solve that part of a correspond-
ing game of degree into which the game of kind has been_imbedded."rhe
§ common part of optimal strategies for these two games is the barrier,
; i.e, boundary of dom in of centrollability. /
%
—— " " . sk - .

11 L j’, ."!.‘. ;.'I,' 'I f-

T
j-i-wmax  min [ dt with T unspecified, "

: dx S1y¢
. Sijgct to: -y + s, sin vy,
i s . .
s, x¢
dy 177
» dt R ts,

; gnd -1 s,¢ <1,

?;7 j'ff {‘ - 0ss KW,
.0 = §2 = v, < W,

!

v

. with initial location of evader

k(e 0) =y,

y(t = 0) = Yo

"!lﬁséThese equations are derived in Appendix A, since the soluti A,procedurq
. ‘,/ NE

_ system, i L i : J

and terminal surface defined by

x2(T) + y2(T) = 42,

relies on an understanding of the geometry of this relative coordinate
s . I ;’ /I'

L
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Isaacs ([30] p. 35) defines a game of degree as one with a contin-

Ef e o~ orragee. T~ vt

uous range of payoffs. In the surveillance-evasion game, the formulation

eoitop ot

-
"
e e R

of the previous section is a game of degree with time of escape as the 3
payoff. A game of kind is one with a finite number of payoff values. The
reaching of each particular terminal state yields a single payoff value,

Such 1s the case if we consider the payoffs as +1 i1if contact is broken

JHEADS. . i FibL v

and -1 1f the Evader can't break contact. Blaquiere et al ([8] pp. 9-10)

have a similar definition except that a quantitative game (game of degree)

o it o4 A
i ik "

a8 SRk i rrire e Sbian oy i

18 a game in which there is a common target set for both pursuer and

2o il

evader, It should be noted that there are attrition games in the liter-

iz * St o

" ‘ature for which this definition is inadequate [47].
We define the domain of controllability of a terminal state to be
_..._-that subset of the initial state space from which trajectories lead to e

this terminal state for all admissible gtrategies of the player for

RS B ks o

~-which this terminal state is unfavorable when the extremal strategy of

his adversary is played. By an extremal strategy, we mean a strategy
'..,;Eﬂetermined on an extremal trajectory, which is a path on which the
.necessary conditions for optimality [6] are almost everywhere satisfied.

-The barrier, being the boundary of the domain of controllability, is

the trajectory which leads to the boundary of the useable part of the
terminal surface. The useable part of the terminal surface is that part

of the terminal surface to which there are paths from the state space

o ool i AR A, O MG Lt

(see Issacs [30) p. 83 and also Appendix B).
Thus Isaacs ([30] p. 13) imbeds a game of kind into a game of
degree. We may consider a game of degree as a game of kind in which

the prerogative of each of the antagonlsts is exercised to do his "best."
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The point being developed is that one must know how to solve a

game of degree in order to golve the corresponding game of kind. Other

uses of the game of degree sclution are

¥ (1) show path of system when prerogatives are exercised,

(2) when the prerogative is not exercised by one party, indicates
direction system will move,

The latter remark is the motivation for Isaacs's concept of a gsemi-

permeable surface ([30] pp. 70-71). "

Let us discugs further the concept of a semi-permeable surfaggg ‘
‘since even one of the leading control theorists has overlooked thel' iﬁuimLJ‘
reason for this concept in his excellent review of lsaacs's boék [23].
Q:ftlnitially, we consider a game of degree and a simply-connected i:;é LIk

.domain in the state space. When the problem has a solution, this

- ume%Aéﬂomain is covered by & field of extremals [17]. We can transform our

. original problem to one with terminal payoff, so that the value of the
“"*bame; denoted by V, will be constant along an extremal. Consider now

Figure 1. Three extremals with the accompanying value of the game are

" -shown. If extremal strategies are used by'both players, the trajectory

* 3
- remains on the extremal. If the Pursuer uses his optimal strategy ¢ , ‘ 4

but the Evader uses a non-optimal stratezy, then the course of the . e

system 13 steered to lower payoff values and similarly when the roles
are interchanged.
To reiterate, the semi-permeable surface is a surface in the

state space for which each player controls the penetration by the path

i T o g Yo

of the system by use of his optimal strategy. When a player employs
his optimal strategy, his opponent can't steer the system to a more

favorable position by any strategy, and if he doesn't use his own optimal i g




G
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-'::_'Pursuer (minimizes)
ol Ao

- Evader (maximizes) _

DSg

Semi-permeable Surface,
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strategy, a less favorable outcome will result. This situation is a
consequence of the criterion functional having a saddle point when

optimal strategies are used. The purpose of Isaacs' introduction of this

concept of a semi-permeable surface is that the barrier, the only place

PN ¥ P e ————p

where optimal strategies are determined for a game of kind, is a semi-
permeable surface.
The barrier is a surface in the state gpace (Isaacs refers to the

state space as the "

playing space') which divides the capture and escape
zones when both exist. The global answer to the capture-or-escape ques-
”tion depends on whether or not the barrier divides the state space into
two parts. Hence, we know that if we can show that the barrier termi~
' nates without having done this, the entire state space is either all E :
7 capture zone or all escape zone. For the problem at hand (surveillance-
"_““;;;;vasion) this means that there 13 probably no surveillance zone 1f the
_barrier so terminates. Termination of the barrier is discussed in
| Isaacs's book [30] on pages 210-214. The argument given there that a
barrier terminates due to an abrupt change in direction (see Figure 2)

1is best understood by recalling that a game of kind is imbedded into a o

game of degree. In this game of degree. each behavior would lead to 1 E

more than one extremal at a point in the state space. {

c. Connection with the Homicidal Chauffer Game

The research philosophy has been to employ a "broad" approach to
specific problems by drawing upon theory from diverse fields. For
example, consideration of the geometric properties of complex numbers

has led to a geometric way to construct extremal paths in the homicidal

L v 4 P eI

chauffer game. This led to the correct condition for termination of the
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barrier (and hence the existence of n¢ surveillance region), wh;ch h;é
eluded both Dobbie [14] and Isaéés [31].

Consideration of a sequence of closely related problems has been
attempted to try to learn from their common points. Three such
closely related problems are:

(1) destroyer to fixed destination,

(2) homicidal-chauffer game,

(3) surveillance-evasion game,

In working on the surveillance-evasion game, consideration of the first
two problems has proven to be useful. The study of these has many

_.points in common with the surveillance-evasion game. Hence, analysis

“of these problems is presented in Appendices B and C as baclground

7 Egperial.

Specifically, the relationship of the homicidal-chauffer game and
~the surveillance-evasion game is as follows (as first pointed out by
" 1saacs [31]). Consider the terminal surface of the hemicidal-chauffer

~game. It is a circle, and the state space for the game is exterior to

:ff;his circle. For the surveillance-evasion game, the state space is

interior tc the terminal surface with the useable and non-useable parts
of the terminal surface being interchanged. A point worth noting (again

first pointed out by Isaacs [31]) is that most pursuit differential games

~can be converted into surveillance games by turning the ana_ysis inside

out.

d. Soclution of the Surveillance-Evasion Game

In this section, we show the solution to the game of degree. Analysis

detalls are presented in Appendix D. As noted in Section IIIb, we may

A - ¢ TR ek

R R T e
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consider the game of kind as imbedded iﬂ a gama of degree. Hence, when
we consider the problem as a game of kind (Is 1t possible for surveil-
lance to be maintained?), optimal strategies of the game of degree only
apply on the barrier for the game of kind.

Before discussing briefly the geometric aspects of solution, let us
summarize the new results of the current research:

(1) correct condition for surveillence to be maintained,

(2) new geometric construction for escape paths,

(3) extension of model to non-circular detection region.
An important question to be answered by che model is, "Under what

circumstances can survelllance be maintained?"” The correct answer is

when

S —d 2 RUT =, /w7 + 2(wy /X (r - WY, @)

cosy = wzlwl and 0<U g w/2,

h Dobbie [14) and Isaacs [31) had derived different conditions.
We also have discovered a geometric interpretation for the optimal

escape paths, For 01 % Zijl(ﬂ - u), the path equation may be
2] - .
written as

eamap
i [x(T)- R] i cos w, T/R  sinw, r/R][(d - Twy)sinu - R

- (3)
y(1)

-sin vy /R cos w /R

d -1 wz)cos u |

where U £ u<7r/2 and cos u = wzlwl, 00U x /2.

T=T-t i.e., time measured backwards from escape.
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This equation says that the Evader's location on an optimal escape path
may be obtained as follows (with reference to Figure 3):

{1) locate escape point on detection circle, for example Al'
{2) point moves along line OA1 with speed v, towards O;
at time 1t 1t is at AZ’

(3) rotate A2 through angle w
point (R50); this yields &é,
trajectory at time 1,

t/R 1in negative sense about
the point on the optimal

(4) maximum possible rotation is through angle 2(m - u), where
u 1is angle between line from escape pcint on detection
circle to 0 and the pesitive y-axis.

At a later time To» the point has moved to A3 and is rotated to

As on the escape path. When the optimal trajectory 1is the barrier,

" here is an additional special geometric prcperty of the escape path.

normal is tangent [12] to the circle just mentioned. This is illustrated

_ . for point Aé in Figure 3. For non~barrier escape paths (consider path

‘BlBéBé), the curve is not an involute to any circle, but the same geo-
~metric construction holds.

This geometric construction provides deeper insight into the
geometry of escape paths. (A similar geometric construction is possible
for both the destroyer to fixed destination problem and the homicidal
chauffer game.) It suggests that there may be a conjugate point [44]
to the escape point on an optimal trajectory, i.e., neighboring extremals
intersect at this point. Such a point is Bé in Figure 3. Further

investigation of this phenomena gseems warranted but time hasn't permitted

it. The geometric construction suggests that the problem may be more

L dede iges o
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easlly solved in relative polar coordinates, but this has not been
explored too far as yet., A similar construction results when the solu-
tion is extended past the time restriction above. We note that the
y-axis is a line of symmetry for this problem,

We have briefly examined this problem for a non-circular detection
region, Our research indicates that Dobbile's [14] approach 1is incorrect
and that the problem should be re-examined for some simple non-circular
geometricg., This implies that the involute tactic [16] may not be
optimal for non-circular detection regions. The justification for

- -these statements is given in the next section.

We now consider the geometry of the solution to the tracking pro-

~+fuwiplem, We shall describe the optimal trajectories (as far as the curreat

- research has progressed) and optimal tactics. The type of geometric

iconfiguration for the escape paths depends on the craft speeds, the

_ Purcuer's minimum turning radius, and the radius, d, of his detection

3xegion. We let

A = RUTSGRAT + 2y ), O
" dy = ROVT ~Gayfud? +(uy/w) (3w -U)+ 11, (5)

where
cos U = wzlwl and 0 U < n/2,

Then, there are three cases (see Appendix D for details):

{1) 4 < dl no survelllance region (of type in next two cases)
(2) d1 £d < d2
(3) d2 <d barrier meets the negative y-axis.

1
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These three cases are shown in Figures 4 through 6. 1In all cases the

barrier 1s the involute to a circle of radius R wz/w1 and center 7 2o

(+ R,0). The tangents to these circles from 0 are of special signi-

ficance. The escape paths are symmetric with respect to the y-axis,
~and hence we discuss the solution only in the right half-plane. Let
u be the angle between line from escape point on detection circle to

0 and the positive y-axis. The equation of escape paths 1s given " ‘ “mﬂ

o A d B o, > S B B3 B s

by (3) for range of 1 given there,

In case (1), the barrier terminates when it reaches the circle
of which {t 1s the involute (see AA' in Figure 4). Paths which terminate
be;ween A and B are given by equation (3), but it hasn't been ascer-
gained whether such paths terminate abruptly (yielding a dispersal surface)
for Tt x 5. 2 R/Ul(ﬂ - u) due to intersection of neighboring extremals.

Escape paths have not been traced backwards for 7t 2 1 Thus, although

1
ﬁhere is no surveillance region of the type for cases (2) and (3), the
optimal escape paths have not been determined from all of the state space,
'i;nd there may be '"surveillance pockets' present. Hence, we have estab-
lished the Evader's escape tactics only in the small region AA'CB, when

he 1s close to the limits of the Pursuer's detection capability. One

disturbing feature of this mecdel is that for escape at x(T) = d sin u

and ©/2 < u < 3/2 7, the Pursuer's optimal tactic is to stop dead in
the water, s, = 0. Such escape paths (shown in Figure 4) terminate
at D, E, and F and originate from 0.
In case (2), the barrier divides the state space into a surveillance

zone and an escape zone. For O stg7T1, =2 R/wl(n - W), the Pursuer

1

uses ¢ = 1 (sharpest turn to right). For < >_rl, the Pursuer uses

¢ = -1, and the barrier is given by
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’

] lcos wl(t-tl)/R -sin wl(T—Tl)/R x(rl)+w2(T—Tl)cos(n/2-\&+R

ok

x(1)4R

™

(6)

v(t)

[IRTERT

gin wl(t-rl)/R cos wl(T-rl)/R y(rl)—wz(t-Tl)sin(ﬂ/Z—U) .

which may also be shown to be an involute unwinding from a circle with

e
"

center at (-R,0) and radius R wz/wl. At T = T the point D is

1’

always located on the lower tangent to the circle as shown in Figure 5.

ke

It lies between O aﬁd D' (when d = dl, it is at D'). The paths

1 b s il b

terminating between A and B intersect each other, but complete
details have not been worked out as yet. Again, for escape at x(T) = d sin u ’ ;Z
and ®/2 < u < 3/2 7, the escape paths are straight lines terminating

~at, for example, F, G, H, and I. Paths in the vicinity of ODE (a "pocket')

[RPRTRSD NN

haven't been worked out.

e In case (3), the Pursuer only uses ¢ = 1 on the barrier, since

=

it intersects the negative y-axis before =t = 7 When d = d2, the ,

barrier is tangent to the negative y-axis. Other aspects are similar

to above. This case is shown 1n Figure 6.

e. Shortcomings of Previous Work o ,{llrfifi':t

The differential game solution techniques of the current research

differ from Dobbie's approach {14). It 1is the purpose here to discuss 3

such differences, since some of our results differ from his. Dobbie, if?
considering a game of kind, uses Isaacs's 'game of kind approach," 5
(see chapter 8§ in [30]). As we have discussed above, Isaacs developed

this approach by imbedding such a problem in a game of degree. The

analytic details of many steps in the solution of a game of kind (see i.f
[30] pp. 205-210) will be seen to be the same as employed here (game

of degree) with the vector of dual variables ; replaced by the normal

to the barrier ;. The Hamiltonlian is also modified slightly. However,
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Geometry of Tracking Problem, d2 = d.

Figure 6.
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two important aspects are not adequately treated in Dobbie's work [14]:
(1) termination of the barrier (see [30] pp. 210-214),
(2) construction of the barrier (see [30] pp. 214-215).
As we have discussed above in section IIIb (see also Appendix B),
whether or not there is a surveillance region is dependent upon whether the barrier
terminates or not. This aspect of solution is ignored by Dobbie, whose
condition for the existence of a surveillance zone should be contrasted
with ours.
A more serjous criticism must be leveled at Dobbie's method of
determining the useable part of the terminal surface, denoted as UP.
Dobble does not make use of the fact that every game of kind is imbedded
in a game of degree. Hence, he does not recognize that the solution
_depends on the geometry of the detection region and erroneously concludes : .l
that the solution for a circular detection region would apply for an
arbitrary detection region ([14] p. 177). The purpese of criticism
of Dobbie's results is to point out that the surveillance-evasion problem

has not been solved for arbitrary detection regions and suggest such a 4

task as a future research effort.

o

Let us discuss why the solution depends on the geometry of the
detection region. 1Isaacs ([30] p. 215) states a critericn for the
construction of the barrier: the normal to the barrier coincides with
the normal to the terminal surface. This leads to our major criticism
of this pioneering effort: Dobbie tried to extend the model's solution

for a circular detection region to arbitrary detection regions when

such an extension is not justified.

ot o O i e o i S T W S e e N i &
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We consider a second argument (from optimal control theory) for
solution dependence on geometry of detection region. Dobbie (p. 174)

3ays, "Let t = 0 at a polnt A of a barrier for which yv, = xv_,

1 2
so that the normal lies along the radial line OA." Since t = 0 1is
time of escape, the barrier is tangent to the detection region at
escape (normal of barrier is perpendicular to escape surface) for a
circular detection region but does not have to be for an arbitrary
detection region. It is well-known in control theory (see [2] p. 290)
that ; is parallel to n where ; is vector of dual variables at
terminal surface and n 1is normal to terminal surface (pointing inward
to state space). For the problem at hand, the normal to the barrier
(1n Dobbie's notation) is parallel to ;. Hence, this normal must be

““perpendicular to the detection region at the moment of escape, and this
condition may be yiqlgteg in Dobbie's analysis for an arbitrary detection
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IV. Conclusions and Future Extensions

Here we summarize what we have done and suggest possible future

research.

We think that we have established more firmly the mathematical

basis of a certain type of surveillance-evasion model. Specifically,

we have accompligshed the following:

(1)

(2)
)

4)

parts of the surveillance-evasion game of degree have been
solved (A disturbing aspect is that the Pursuer stops still
in the water for those cases when the Evader escapes "behind
him.").

correct condition developed for surveillance zone to exist,

devised geometric construction for describing optimal escape
paths,

showed that Dobbie's extension of the solution to arbitrary
detection regions was incorrect.

Based cn this research effort we suggest the following as possible future

“work:

(n

(@)

3

(4)

develop further the solution to the game of degree (This
would provide insight into Evader escape paths and tactics,
especially for those cases when contact can be broken, i.e.,
no surveillance zone.),

examine problem for non-circular detection regions (This
would allow actual sonar patterns to be more accurately
described in the model, We suggest that analysis first
consider an elliptical detection region and then try to
generalize results.),

consider surveillance-evasion game in relative polar
co~ordinates (This approach is suggested from new geometrical
construction noted above and 1s related to tasks (1) and

(2) above.),

study extensions of basic surveillance-evasion scenario,

(a) formulate problem which eliminates a stationary Pursuer
as an optimal tactic,

(b) study effects of Evader having maneuverability limita-
tions (What quantitative effect doeg this have on

e e spcde - —zos ar: e o PPV ST N et

st e

oo e



(c)
(d)

30

condition for Pursuer to have surveillance zone? This
would be an application of the extension of Isaac's
homicidal chauffer game called the game of two cars
(30] p. 237.),

study problem of two Pursuers against a single Evader,

develop other models of tactical interest and study
other extensions in the literature.
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APPENDIX A. DERIVATION OF BASIC EQUATIONS. ;

In this appendix we derive equations (1) of the main text. Even
though these equations are briefly derived on p. 30 of [30], we feel

that the current derivation has increased our understanding of the

o e b

relative coordinate system and may be useful to others. First we

translate the restriction of a finite, non-zero minimum turning radius
into a restriction of the maximum rate of change of direction. Next,

we develop the basic equations in a fixed reference frame. Finally,

‘
e

‘the equations are transformed to the relative coordinate system.

a. Implication of Finite, Non-zero Minimum Turning Radius.

T ome= We consider motion of a point in the plane when the radius of

curvature is bounded below and greater than zero. We assume that the

L 5
WG B

Q,Jw_ i - “*’point is moving with constant speed w and adopt a fixed rectangular
frame of reference as shown below. The curve is given parametrically

by

U g e

i

B <

D g 4
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.. .where the parameter, s, 1s arc length. The curvature, «, is defined

-~ where the angle of inclination is shown in the figure below and the
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x = x(t) and y = y(t), where t {is time. Hence, the velocity

components are given by

dx 0
qc " W cos 8, ,
(A)

dy

ac = v sin 6.
1f there were not restrictions on maneuverability, then we could choose
@ = 6(t) 1in a completely arbitrary manner. Let us now see how a lower
G
de’

We consider a curve in the plane given by x = x(s) and y = y(s),

bound on the turning radius restricts € = 6(t) through

ffhs the rate of change of angle of inclination, 8, with respect to arc

.-dength (

see pp. 280-282 in [12]) .

4 _do

K= Um as _ ds’

As>Q)

ZA'slope of the curve is related to 6 by tan 6 = dy

dx
: / Aelg i
O
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The radius of curvature of the curve at a point 1s defined by p = 1/k.
The restriction that the radius of curvature is bound below may be E
expressed as p 2R >0 or « £ 1/R. Introducing a new "turning"

variable, we may write this as an equality
k= ¢/R where -1 ¢ =1, (A2)

Since time is a more convenient parameter than arc length, we have ' i

do _de  dt _ do.ds
4 " dt " ds " dt'ac . (a3

Recalling that ds = Vds? + dyZ, we have that

R e /@ -, )

‘bey use of (Al). Combining (A2), (A3), and (A4), w= obtain

doe
ac = ¢w/R where -1s ¢ <1,

which 1s the desired restriction on 6(t) from the luwer bound on

the "turning" radius. We summarize the equations of motion in a plane

when there is a lower bound on the vradius of curvature, R.

X . w ¢cos 6
4t !

e e e = P e S
[ I -

at = yw sin 6, ’
a8 ;
Frie ¢w/R where -1 s ¢ < 1, (A5)

b. The Relative Coordinate System.

It is convenient to adopt a relative coordinate system, one that
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moves with the observer, Our development is the same as Koopman's
([38] or again [39]). We consider first the simple case of motion at

: {
fixed speed and course for an observer (who carries the coordinate

system with him) and a target. Assuming both the observer and the

target move at constant speeds in straight lines, we let

~
pysnpya———

v = gpeed of observer in knots (ocean or true speed),
u = gpeed of target in knots (ocean or true speed), 1
w = speed of target relative to observer in knots. !
> - -
The corresponding vecters, v, u, and w, describe the constant

N
motion. We note that the vector difference, ; = 3 - v, gives the

ph F i v rar yir i iier ADRRS

motion of the target relative to that of the observer. Figure Al shows

-

the relationship between true and relative velocities and angles. In

" Figure Al the vectors are "laid off" from the same point. The actual

" "situation is shown in Figure A2.

Thus, we consider a coordinate system moving with the observer
(see Figure A3),.
(or Pursuer)’ The y-axis of this coordinate system is coincident with

the observer's velocity vectory. P 1is a fixed point, located at the
origin. The point E (which may be either moving or stationary in
the fixed reference frame) moves relative to P, We later derive the
equatiouns of motion of E relative to P, We note that in this rela-
» tive coordinate system, there are two factors contributing to E's
motion:
(1) rectilinear motion of P and E,

(2) rotation of coordinate system whem P turns.
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Evader, E

y is relative heading of Evader

Pursuer, Pb- — — = —~ — ~ o o o @ ~ - - o ——
0 X

Figure A3. The Relative Coordinate System.

c. The Basic Equations in a Fixed Reference Frame.

We consider the motions of a Pursuer, P, and Evader, E, in
a stationary coordinate system. We consider the problem of the Evader

trying to break contact with a Pursuer by moving out of the Pursuer's

" -detection region, which is circular with radius d. We use the

notation defined in section IIla. of the main text. The situation is

shown below.
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We have seen above that the non-zero minimum turning radius, R, of -

the Pursuer ylelds a restriction on the rate of change of a

dua
4 ¢sl/R where -1 ¢ <1

Hence, in the stationary coordinate system the surveillance-evasiun

problem may be stated as

T

max min [ dt with T unspecified,
¢’Sl B-QSZ b

4 dx

ect to: —,—— =8, COB O,

subj At 1

A .

sin a,

N

A S —,—f—:da
/] L2 = < -
- dt ¢51/R where -1 x ¢ =1,
R ! ffg = g, cos B SN
T { ToTLT ‘, dt 2 9 ! Tt
dy
2. s, sin B8
7 ) dt 2 i
where 0x Sl < vy
. 0 5, £ Wy

with initial conditions
= = 0 = = 0 = =
x, (e=0) = x7 v, (£=0) = y7 a(t=0) = g,

= = 0 = = 0
xz(t 0) X5 y2(t 0) Yy

and terminal condition

[x ()= x, (D2 + [y (D)= y,(D)]? = a2

P

i vqpasain oo prpar:

(st sy

o —————————— e



'd. The Basic Equations in the Relative Coordinate System.

We now transform the above equations to the relative motion
coofq;nate system discussed previously, In this new system x 1is the
:9*”'37..2distan§e the Evader, E, 1is from P in a direction measured perpendi-
“‘; EZgg}ar to ‘Pfg heading. In this relative coordinate system there are
.‘iltﬁ9‘§§§t°rs leading to the apparent motion of E:

S
'%{1) rectilinear motion of P and E, and

‘-}"; (2} rotation of the coordinate system when P turns.

(S Thaiaomponsnts of velocity due only to translation are given by (see

“aw i Figure A3)

] S ;;‘}£<;; o dx
e : (Eg)t = s, sin v,
- ;____;i____ (‘dl) = g, COB Y - 8_.
. T : de’ 2 1

-since P's motion 1ls always directed along the y-axis. We next derive
the components of velocity due only to rotation with angular velocity
W= %%. When P turns to his right (¢ = 1), E 1is rotated counter-
clockwise about P. We take w to be positive when counterclockwige.

Then

— P - - —clg 2
)t wy (dt]y SlY¢/R’

(41) = ux = (g%)x = s,x¢/R.
r

Using the fact that

dx _ (dX) + dX] ,

dt = ‘de dt

t r

equations (1) of the main text are readily obtained.
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APPENDIX B. DESTROYER TO FIXED DESTINATION

In this appendix we derive parts of the solution for the best way to
steer a vehicle with a minimum turning radius to a fixed destination in
least time. We call this problem “destroyer to fixed destination." It
is of special significance, since it is the limiting case of the homicidal
chauffeur game when the Evader's speed goes to zero. Study of this problem
has increased our insight into these pursuit—-evasion problems. The new
geometrical construction for optimal paths was first suggested in our
study of this problem. As a general principle, many times most of the
significant solution aspects of a differential game may be studied by con-
sidering a one-sided version of the praoblem.

We state the problem and then present the details of analysis. Next,
we discuss our new geometrical counstruction for optimal trajectories in
such problems. Finally, we discuss the geometry of the solution and
summarize the analysis results. Many solution steps and aspects are ex-
plained in elaborate detail in this appendix.

a. Statement of the Problem.

.The problem i1s to determine how to steer a constant speed vehicle
with minimum turning radius, R , from any point, (xl.yl) s in the plane

to within a distance, & , of a terminal point, (xz,yz) s, in the least time.

In a stationary coordinate system the problem is

T

min J dt with T unspecified,

* o

b g e
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subject to: 5= = wcos 6,

dy w ywsin o6 ,

de
T ¢w/R where =1 < ¢ <1,

with initial conditions

x(t = 0) = x, , y(t-O)-yl. 6(t = 0) =0

1 1’

and terminal condition

[x(c = ) = %)% + Iy = 1) - y,1% = 42

We transform this problem to the relative coordinate system of Appendix

. A in the same fashion as shown there to obtain:

T
min J dt with T unspecified ,
¢ o

W
(eubject tor G = ¥4,

R

%% = %-x¢ - w where -1 <3¢ <1, . (Bl)

’,yith initial conditions
x(t=0) =xy, yle=0 =y,
“viland terminal condition

x2(T) + y2(1) = &2
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; b. Development of Solution i
'
| Hamiltonian, H(t, x, p, ¢) !
W w :
H(t, %, py &) = 1+ pylqgye) +py(g x0 -w), (B2) !
* LR T
! aJ EN] *
| where PL ™ % and P, = 5, are dual variables and J" = min dt .
! o y $ ‘o 4
{
We determine the extremal control from 4

min H(t, x, p, &) » min{% ¢(p2x - ply} subject to -1 £ ¢ £ 1,
) ¢

Hence

o - sgn(ply - pzx) = sgn A(t) , - (B3)

where A(t) = P1Y ~ PoX and sgn x =

Boundary Conditions for Dual Variables

Since termination is any point on a curve, we must have E = (Plp2)

normal to this curve at t = T(terminal surface) (see [2] p. 290). We

let n be unit normal to circle (terminal surface) pointing into the
state space. Then n=sinsitcoss 3 » and we have ; = an . Since

the constant is arbitrary, we let it be 1 and hence

pl(t = T) = gin s , pz(t =« T) = cos s . (B4)

Usable Part of Terminal Surface

Because of the nature of the relative coordinate system, it is not
possible for paths from the state space to end anywhere on the terminal

surface xz(T) + yz(T) = iz . Fhysically, the terminal surface is a circle

E
|
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about a moving point. 1In a fixed coordinate system this circle moves

with the point. Consider a line perpendicular to the point's velocity

vector and passing through the point. This line divides the circle into

two parts: one part is ahead of the point's motion and the other is be-

hind. The problem ends when a fixed point, the destination, crosses the

moving circle, Clearly, forward motion of the point can never cause a

fixed point to cross the rear half of the circle. In the relative coordi-
-

nate system, we can describe this condition mathematically as 5 . i <0,

where n 1is unit vector normal to the terminal surface and pointing into

the state space and

 dx

+ dt

X = ,
dy
“dt

~ is the vector of velocity components in the relative coordinate system of
the moving point (destroyer). That part of the terminal surface for which
"capture" can occur is called the usedble part (see p. 83 of [30]).

~ For the problem at hand we have

Tno=sins{+coss 3 »
T e ;
X= (-§Y¢){+ G X6 = W],

where the terminal surface is parametrically represented by s as shown

below.
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)
v
N
( > 5

b ;

i e - W

| X :

! o '

: N K f

; N :

"V i3

! Hence, we have { 5

; 14

: 3] x(t =T) = sin s and y(t = T) = & cos s. s

i }

I Then (j

! ').((t=T)=(—%-\bi(‘oss)—i’+(%kbisins—w)g',

1 P —

I "o - - J— _3

[ . and hence :

i 0 - e _ w o . W .

: _ n-X(t:~T)—(-—ﬁq\xcoss,sins+(ﬁ-pJlsx.ns-w)coss

| I3 .( ~ .

i or ,

: noe X(t = T) ='-_-,w cos s = 0, - : (B5) .

3 . - t. [§ =

i defines the usable part of the terminal surface. Thus cos s > 0 for 3

l capture to occur and the useade part, UF , is given paramecrically by ,

| . . T e . N N 'l '

: e - - - % ;

! Yo WP ={s] -5 s i (B6) 7

i 1 B - i

! ‘ i

| Equation (86) siwply says that "capture" only occurs in the "front half" :

| - ;

| . 3

| of the circle about the moving point. i

l The boundary of the useble part of the terminal surface, BUP, divides }

'i the terminal surface into useable and non-usedble portions (see p. 83 (30)). ,'3_"
1.
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The paths which terminate at the BUP are then the barrier, for they
separate the staie space into regions from which paths either do or do
not "lead directly' to the UP. We have noted in the main text that Isaacs'

concept of the barrier corresponds to that of the boundary of the domain of

controllability in the control theory literature ([23]). We now see that

we can determine the barrier by projecting the BUP backwards in time before

capture.

The Adjoint Equations and Their Solution

We have that

LMW,
dt o PR ¢
a8 w,
dt 3y  Pi R

Since the boundary conditions for the dual variables are given for t =T,

it is convenient to let 1 =T ~ t and integrate the adjoint system back-

wards from the end. Accordingly, we obtain -

dp1 w
I P2 R ¢ pl(T = (0) = gin s ,
dp
2. 5. ¥ 1= 0) =
= PR p2(4 =0) = cos s .,
We may combine these equations as follows:
]
2 2
d'p dp d'p
1L 2 0w (W L wey2
2 % Tde v &) 7 t Ry = 0

dt dt

At L o e e sy =

ot .+ A i e A ¢ i o 3
. T g s St e A gt S e T St —

——

R B T § e Yot o

P T
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Henee
y W . W
P iy = A cos =1+ B sin o ¢ »

J R R

with initial conditions

p](l = 0) =, = gin s
dpl w w W
T (v =0) = m ¢B = p2(1 = Q) 7 o = R $ cos s * B = cos s .

Substituting for the constants and simplifying we find

Yoy . (B7)

pl(() = sin(s + 5

Similarly, it may be :hown that

FZ(I) = cos(s + :"L &) . ' (BB)

Solution to the State Equations

In the "backwards time' we Rave

dx

W .
= = . »ii =0) =2 sin s
d1 R ¥ ) ?
dy w : SN .
o c ¥k oy Y{1 = 3) = Lcos s
d1 R . ol

\“\\_

We combine these equations te determiuve a second order equaticou for x

AN

as follows S ' L L
_df_- - .‘i d‘ Ell = l-_ S ¢)2X + "_". anl
/S-S T | R ™o
dt .
oY
2 2
d™x w 2w
-"‘—2- + (R ¢)'x = R ¢ .
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The solution to the above equation is given by

w W R
x(1) A cos R $1 + B sin R o1 rel

where the constants, A and B, are determined by

x(t=0) = £ sins = A+ %— > A= . sin s - %

———— -

e,

ax (o < w =0) =¥ =Yg B = a

i (1 = 0) R py(t =0) = R ¢ [ cas ? R ¢B - B = 2 cos s . L
Hence, after some simplification, we obtailn: "

’ Y " - A

x{1) = £ sings +<§ $1) + — (1 - cos §~¢1) . "~ (B9)

Similarly, it may be shown that
w R W ‘LLV
y = x 3+ 2. XN oo : 1
g (1) 2 cos(s + = ¢1) -+ 3 sin r 4 ‘ (B1Q)

Note that the above equations (and also (B7) and (B8) hold from the terminal }
surface (1 = 0) until a transition surface is reached.

Transition Surfaces and Termination of the Barrier. ' ) ‘ *§;

We have seen (equation (B3)) how the "steering' variable ¢ (this

variable determines the rate of change of heading for the moving point in

the fixed coordinate system) 1is determined by

[

¢ = sgn A(L) , (B3)

where A(t) = P{Y = PoX » There is a problem, however, at t = T , since
A(t = T) = A(t = 0) = sin s(2 cos s) - cos s(L sin s) = 0 . We can overcome

this by a continuity (with respect to 1) argument. Moreover, we have

e —— T s Spn B VS Wit o W < o S

§
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dn dp
gL Ty
d ' N a T TP o
W \ w ’ W W N
= (p 53 “2oaantw) = (mpy D) = paGrovi)
(hp g 30 eyl on ) = opy 9 =y Govid
Hence,
JdA W .
T TP sin(' + N ¢t) witt A = 0) = Q ,
and then we finally obtain 1
R . .
A(1) = = {cos s = cos(s + : RS I ‘ (BL1) -
| : , .
Z : e
] - 4 P
‘ Thus, for 0 - 1 - Y (where Yy will be determined presently), <
v bt - B . L
| | : .
B =1 for - oS 0 i 1
¢ () = - . Y
. "+l for 0. s -~ % KA
: . e . =
» Since optimal trajectories are symmetric about the y-axis, we only consider e :
solurion behavior in the right half-plane of our relative coordinate system.
b (onsequently, for Q ~ s - 2‘~ , we detevmine Ty As follows: it is the )?
" first time that A(*) = 0 after + = 0 . This happens when 3 :'
. w -
cos s = ¢cos (s + ﬁll) s v e
. Ve !
wiiich is precisely when .
N \_2» i '
_ w T
v - 5 = g + R it \ :
Hence, for 0 < s ~ =/2 , we hawe - v (
o= TR (n e g) . B12) . -
"y - ( s) . (B12) . ‘
A
~ ‘Equation (B12) determines i such that ¢(¢) =1 for 0 s 1 < 1y - For :
T s we have A{1) « 0 (we have not proved this) and hence ¢(1) = -1 : i B
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This equation says'to determice a

we rotate the yoint x =

SRR L L S e E’ =y e
&

i

on optimal trajectories in some interval past o

such points where (B12)

For s = w/2 , we have the barrier and bence ¢{1)

barrier" for 0 < 1 < Rn/w .

barrier are

, W
x{(1; - R= ~(K - %) cos A
. : LW '
. ylt) = {R - L) sin R ,
.. which we may write as s L
‘ R ' : R ’ v; : . . x
- ’ :x(:) - R ! cos " “cin rek
. - : = . !
P ] [ ( ) , ' o : W '
¢ § T Sy=sin o7 008 T T
A S / VTR vt R
Y AN / - K

toat :
point oi the bariier

.

holds defines a transition surtace.

=1

o

49

Hencn, the locus of

on this "richt

From (B9) and {B10), the equations of the

. R
at time 1 5_;—n .

£ - R, y=.0 through an angle %-1 i the

negative (counter-clockwise) sense about the point x ¢« R, y = 0 . Hence,

i

. R ‘ : .
for Q<71 2 o F o the barrier traces out the curve sho
- ; TN o R . Lo -

: .
. : &

Barrier-—- ", -
. W

nQ}bg;ow in

Barrier

S e
v - , L H
L i
RIS o
- ¢ \'\-,; g“‘ i . \
\ | i
. . 1
o * '
e ‘5:, . -’ '
- L . ’ . .
(-R,0) Sy \\L/Q (0,0)
NS
N :
4 N V(.\.

Figure Bl. Rarriers to Destroyevr tc Fixed Destination
T . K

'

\

Problem,

vt
)
SRR
.
-
Figure B1.
- o -
B R
oy ' !
.
. A
o '
X ,

A o " L,




New we shall eapialn wiy this barrier must terminate at 1y o= n2iw.
We biive provicugty discussed this subjecl In section I1Ib «f the main text
{ave abae pp. 210-20 of [30)). To summarize, there are two equivalent
ctiteria ror termination ot the barrier:

(1) (Isaavs) Jue to a change in the orientation (direction of travel)
o1 the barvier curve this semipermeable surface cannot be
vxtended,

(2)y (Tayloer) the barrier terminates if its extension would lead to a
"mullicovering' of extremals in the region of extension (with
the extension being non-optimal).

For the problem at hand, for 1 - T = T"R/w and s = n/2 there would be
a cusp (tangent to curve continuous but both dx/dv and dy/dt change
sipn), since the extension (we have not proved this) would be an arc of a

virvie with center (-R,0) with ¢ = -1 , {i.e., curve

‘changes orientation
~and there can oe no semipermeable continuation" ({30] p. 211). We recall
4

that for x = x(1) and v = v(i)

dv &1
dx ~  dx :
drt

Thus we can have the tangent, dy/dx , continuous but both dx/dy and
dv/di  change sign. The curve has a cusp at such a point. For the problem
at hand, the continuation of the barrier past T would produce such a

cusp, but a cusp is not necessary for termination (see homicidal chauffeur

aanme Appendix C).
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We might also aryue along the lines of (2) above that if (in the
game of degree) the barvier were to be extended, it would interscet ad-
jacent estremals causing a "multi-valued” solution. Hence, we discard the
dashed portion shown in Vigore Bl

Continuation of Solution Pas: Transition Surtace

Continuation past o= 2p/w(r = s) for 0 - s - /2

, vesults in
an arc of a circle with center  (=K,0) with travel for increasing 1 in
positive (counter-clockwise) direction, i.¢e., ¢ = -1 . Time has not

allowed all such analvsis details to be worked out.

The Singular Solution (Universal Surface)

Fer the probiem at hand, the Hamiltonian is a linear function of

the contrel variable ¢ ,

H(t,X,p,8) = ¢ % (p,x = pv) + (1 = pyw) (B14)

P2
with the control being determined by (B3) except for when the coefficient

of ¢ vanishes for a finite interval of time. 1In this case we have a
singular solution [32], [33] for which the necessary condition of maximizing
the Hamiltonian (with respect to the control variable ¢ ) does not provide
us with a well-defined expression for the extremal control, Tsaacs

([30] Chapter 7) uses the terminology universal surface.

A singular extremal is detcimined from the conditions [32], [33]

2
2 d 7 a“
:ﬂ,; G and — gﬂ = (0 . 5 ?ﬂ = 0, etr. as needed
dt  d¢ AT

e g
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For the problem at hand we also have H{U,x,p,¢) = 0 , since the termination

time §s nnspecificd.  Also, above cquation (B11) we saw that dA/d1 = pow .

1 —~
Thus, since  all/5e = - ;‘A(l) , we have the tollowing equations for a i
siogular subare ‘-
1 - pzw =Q ,
W
TP = py) =0,
2
and Py /R =0
Hence, we see that on a singular subarc we have
p,(t) = 1/w >0,
( =
x(t) =0

The singular control is Jdetermined by the above conditions that the dual
variables are constant for a finite interval of time. Recalling that
dpl/dt = —cpzw/R and dpz/dt = ¢plw/R . we see that ¢(t) = 0 1is the
required singular control. A physical interpretation is enlightening:
once the destination is straight ahead (x(t) = 0) , the destroyer steers
a stralght course (¢ (r) = Q)

We must further test to see if this singular solution can yield the

optinal return; i.e., minimum time. 4 necessary condition for a singular

subarc to yield the minimum return (34] is (see also [30] pp. 187-188)




53
2
We have already shown that  d/de(OH/34) = PV /R . Hence
_E? i;ﬂ} -~ dp1 WZ/P _ op w(w/P)?
I Y TS A R A
dt dy dt 2
Thus
12 ) >
a £} 2
.a_{_.z [‘-',T,'} . e (e/E) (816)
4§ dt \L\‘J -~
But on the singular subarc (B15) must held, so p,(L) = 1/w. Hence, on

the singular suriace

and the necessary condition is met.

¢. The New Geometrical Conmstruction for Optimal Trajectories.

The following is given to show our original motivation in developing
this geometric interpretation of the solution to the state equations.
Others may prefer the analytic geometry of transformaticms of crdered
pairs, but we usually remember such things by considering complex numbers.
We start bylrecalling ([11] p.8) the well-known geomelric interpretation
of complex numbers in which a complex number is represented by a point in
the plane. With this interpretation, we may then develop that multiplication
by a complex number of unit modulus corresponding to a rotation. We now look
for an algebraic representation. It is well-known that the field of com-
plex numbers is isomorphic to a field of 2x2 matrices with the correspon-

dence being given by

a + ib -~

ot a e at S o

| I A B L A L AL B TP B8 R WA 6 e i Mt ST S s e,

oo ——

R L Sy o)




Thuo, we sve that the egeation (piving the locus ot the transition surface, |
%

see above)

\{:]\ - F Sovus 2w -sin s C sin s - R
= : (817
vigy) sin s Cos 2s W Eovoes s S

is equivalent to (see pp. 2-5 in [(11))

(x(ll) - R) + iy(')) = o {CGsin s = R) + {0 cos 851,

did thus copiesentsd 4 votation of the peint x = sin s, ¥ = aC0s ¢

threagh an angle 25 in the positive scase (counter-clockwise) about the

wint x = KR, v=0 . Atter we recognice this, we may, of course, use
b, Y ]

analyviic geometry to reach the same conclusion.

Thus, we consider optimal trajectories in the right halt-plane for

0. v o= 2R(T - s)/w. We may write equation (B9) as
L w . LW
x(:) = R = (; sin s = R) cuos R + L cos s sin v (B18)
Sirilarly, equation (B10) becomes
R - - \* C e ( N -y “'1 E\" - !-H'N‘
Yiiy o UUn 5 LU R { + 51il o NG sl R Te (KLY
We mayv write the above as
tor 0 s - n/2 and URSE SN S 2R/w(r - s)
. w w .
\ (1) - R | vos N 1 sin R 1 } ‘ x(T) R
\ = i (820)
LW w
\ y () \‘*Sln gt cos 1 ; \ y(T)y .

whete

x{Ty = & sin s , y(I) = & cos s,




w
L

The peometric interpretation of (820) is that the peint x(1) , y (1)
vhich lies on a trajectory terminating at  x (1), v(1) wmay be obtained by
rotating the point (1) , v(I) through an angle wi/R  in the negative
sense about the point x = K | v = 0 . Ve recognize the example above
(B17) as the special case of (B20) when 1 = T IR(n - s)/w.

Let us see¢ how the above geumetric interpretation is useful in

sketching the transition surface. From (B12) we sce that a change in

steering occurs at diffcrent times tor different trajectories,  We have

s =0 %11 = 2
/4 3/2-
n/2 T

Py considering the geometric interpretation of (B20), we obtain the

picture shown below in which the transition surface is a dashed line.

Barrier

Barrier«, &

(-R)O)

N “ -~ .Transition
Surface

[ —

A p—

I

R R TP L TN

PR SR

.-y

e e
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Jd. Ceometry ol the Solution

1o this scction we summarize the results of analysis by drawing a
picture of the optimal trajectories with the control, ¢ , beiug indicated
in various regions.  The singular subare, x = 0 , and paths leading to
it (we hove aot done this analysis) arve also given. This is shown in
Figure Be. Again, the reason this "one-gided" problem has been
studied in such detail is that it is the limiting case of the homicidal

chauffeur game when the Lvader is immobile, i.e., W, = e

~
v A <
. |, - B
[
¢=-1 x=0 - A. Yﬁ=+l
- . Ye=0
1
Barrice N ! s L
by ) + LL “NrarBarrier
N
b \ e
\‘\ Uﬁ_;, 3 v ):
v l'n/“",,’ ‘,/ {
S 4
(O,Ui.-" L___h L _‘_
A
. \ e

\ L4
N 7
e< "®™Transition
Surface

Figure B2. Optimal Trajectories for Destroyer to Fixed Destination

akad .;)M

i
1
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We should note that the above solution is in the relative coordinate
system. We discuss briefly how the optimal paths look in a fixed coordi-
nate system. Such is shown below,wherce the point P is the movable point

and three destinations,

€l

A, B, and C are shown. These points correspond to A, B, and C of
Figure B2. Point A 1s reached by turning as sharply as possible, ¢ = 1.
Point B 1s reached by turning sharply and then a straight-on approach.
The last part is the singular subarc where ¢ = 0 . Point C {is within

the minimum turning radius, R, and some maneuvering is required by P

A o A o 1 27 i e 9 3 41
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AI'PENDIX C
ORIGINAL HOMICLIDAL CHAUFFLUR GAME

In this appendix we derive parts of the solution to Isaacs' homicidal
chaut feur game [39). We do so because of its close similaricy to the sur-
veillance-evasion game (see section 111 of main text).

We state the problem ond present details of its solution. Next, we
discuss our new geometrical construction for optimal trajectories in this
problem. VYinally, we discuss the geometry of the solution and summarize
the analveis results. A more detailed discussion of many selution steps
is to be found in Appendix B.

a. Statement of ithe Problem.

The problem is to determine how a Pursuer, who travels at a constant
speed w , with & minimunm turning radius R , should stenr to capture
in minimum time 71 an Evader, who travels at constant speed w2 , has ne
restricrion on maneuverability, and tries to maximize the capture time T.
Capture conditions are defined by Pursuer and Evader being separated by a

distance & . 1ln a stationary coordinate system the problem is

T
min max dt with T unspecified ,
§ ) -0
subject to: dxl/dt =W, cos 2,

dyl/dt =w, sina ,

da/dt = ¢ w,/R where =~1 < ¢ <1,

o

dledt = w, COb

dyz/dt = v, sin & ,

Dbkl

. o -
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with infitial conditions

0 o) .

xl(L=0) =% s y1(1=0) =¥y e a(t=0) = gy
0 0

x, (1=0) = x) , ¥ (1=0) = ¥2

and terminal conditions

[y (1) = %, (012 + [y, (1) - y, (1% = &

We transform the abiove problem to the relative motion covordinaté system of

Appendix A in the same fashion as shown there to obtain:

T
min max dt with T wunspecified ,
¢ y ‘0
subject to: dx/dt = -wl/R ¥4+ v, sin § ,
dy/dt = wl/r X¢ - W) +w, cos §y where -1 <¢ <1, 1)
L R -— -
with initial conditions
x(£=0) = g y(t=0) = Yo o

and terminal condition

2
-

$2(T) + v&(1) = ¢

b. Development of Solution.

Hamiltonian, H(t,x,p;d,y)

w
. 1 .
HCE.x,p3d,u) = 1 + pl(— U + w, sin V)

+ Pyt i{~x¢ =W, + W, cos ) (C2)

-

A . st . .

SOt Pl A Mt

e e b

it ¢ et ¢
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whei o pl(L) = 23%/0x (L) and p, (L) = §J%/0y (1) are dual variables and

{l T
J?o= min max ] dt = max wmin J dt . We determine extreaal strategics

f o

¢ v 9 vy 70

from
min max H{t,x,ps¢,¥) -~
W)
m{n {- 7;—¢(ply - P2X>} ,
[
3 ax { I ) 5 .
and m?x xwz(pL sin ¢ + p, co )]
Y
Honce
¢ = sgn A(L) , (€3)
whete A(t) = Ply T RaX .

“To maximize with respect to ¢ it suffices to consider

(o} = Py sin ¢ + p, cos ¢ .

A necessary condition is that

df/dy = Q = p, cos ¢ - P, sin J ,

1

and hence

tan § = pl/p2

Thus, to maximize we must have

&

ot g o i i s
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-+ -
We must have p = (p] p,) parallel to the normal, n , pointing into
the state space to the terminal surface. Now, since

N - o
n=s5insi+cos s3] , we have
pl(L = T) = sin s pw(t = T) = cos s

Usable Part of Terminal Surface

We have that

T e
=sins i+ cos s3] ,

2y

ey

w w
1 . NT 1 -
= (- ?(-y¢ + w, sin VL o+ (3;-x¢ - w, + w, CO3 vi o,

1

where the terminal surface is parametrically represented by s as shown

below. A
y
et
s ~ 0
. // .|\
5./, \
/J" 4 x“’”
0 {
w7 :
\

Hence, we have

x(t =T) = &£ sins and y(t =T) =2 cos s.

Hence,

5>
n-X(t=T)=(—=06 1% cos s + W, sin Y)sin s

+ (7:»¢ 2 sin s - v + w, cos ¥)cos s s

,..,.‘

S v e e e

——




6
and when we recall that
p(t=1)
sin o(t = 7T) = ~— -— ® gin s ,
JYTR
’Pl + 1\2
Pt = T)
cos y(t = T) = —=——— = cos 5 ,
|/1 2 + p 2
Pp Ty
we obtain
n o X(t = 1) = Wy = Wy €08 S 3 0 , (Cé6)

where we also assure W Wy (otherwise capture is impossible unless the

Evader is stupid). lence, the useable part of the terminal surface is

given by

UP = {s|-5 ~ s < § where cos § = w2/wl ,» 0 <5< n/2} . (C7)

The Adjoint Equations and Their Solution

We have that

iy

i €

dpl/dt = - JH/sx = P,

1
dp?/dt - 3lU/sy = P, 7 ¢

To integrate backwards from time of capture, T , we let 1 =T =~ t

to obtain
Y1
1 = —= ¢ = = i
Lpl/dt Py 1 ¢ pl(T 0) = sin s s
Y1
dpz/dl =-PR $ p2(r = 0) = cos s .

bt b

e
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PR TT I

o b e
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We combine these equations to obtain a sccond order differential cquation

for p; as follows

dp., W w
2 2 2 Y 1.2
d'p;/dr T L A LA

or

2 2 Y102
d pl/d1 + ( i$'¢) p, = 0

The solution to the above equation is given by
w w

pl(1) A cos e + B sin R o,

where the constants, A end B , arc determined by

pl(1 = 0) =A=sins,

w w w
1

dp./d1{1 = 0) = ?%-¢B = p2(1 = u) Ty o= 7% ¢ cos s ,

1

or B = cos s

Hence, after some simplification, we obtain:
Y1
pl<T) = sin(s + $TY (C8)

Similarly, it may be shown that

Y1
p,(1) = cos(s + " $1) . (co)

Taking note of equation (C4), we also obtain

W w
sin y = sin(s + 7% ¢1t) and cos V¥ = cos(s + ?% $1) . (Cl0)
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Selutieon te the Stale Pyuations

In the "backwards time" we have

1
! Y1
dx/do = " GV = w, sings 4 i ¢) x(i = 0) = fsin s ,
\ - \ '
v W)
dy/di = = —<x 4+ Wy oT cos(s + = ¢

o) y(1 = 0) = cos s .
A

We combine these equatfons to determine a second order differential equation
ter x as follows

w w
Ay L L
e w2 i cos(s + R du)
w w w
1.2 _J‘ “.‘.-..l_n -
(R o) x 7oty cos(s -+ n $1) wl}
w w
-, —l-c cos(s + }\l ¢1)
o 2
2 o2 0 Y12 Y1 ! Y
X+ (5 )Tk o= =255 s+ = = ;
d x/d ( R ¢) % 2R ¢ W, cos(s + m ¢i) + R 9, (Ccl1)
with
x(t = Q) = % s s,
Y1
dx/dt{ = Q) = e ¢ L cos s - Wy sin s
The general solution to

given by

where

the above inhomogeneous differential equation is

x(1) = XH(I) + xp(l) ,

(C12)




x“(l) is the gencrul solution ot the homogencous equition,
xP(1) is any particular solution to the inhomogeneous equation.

The general solution of the homegencous equation Ls given by

! 1
% (1) m A cos -3 ¢ 4 Dosin = ¢ . (C13)
H R R
We use the method of varviation of parameters (120) pp. 72-73) to
find a solution to the Inhomogencous cquation. (This is guite messy but
I have not found an casler way.) We use two linecarly independent solutfions
to the humogeneous equation.

Y1
Ul(l) = cos = ¢,

w

1
uz([) ~ sin —ﬁ-Ql ,

and determine v1(1) and v2(1) where the particular solution is assumed

to be of the form

xp(1) = v (Do, ) + vy (D, (1) (C14)
Heuce
dxp dv du dv, du,
= ==y, + v, T+ =, tv, v
tr u 1 4 U < P VN
Now we set
jil’-l—u + 312-u £ Q (€19)
di 1 dr 2 ’

leaving




since Ul(l) and  u,(x) are selutions to the homogeneous equation,
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| e ot N " -
i - , xivl du J7u dv, du, dTu, .

R R R R Tt e 2 v
l, it AR A T N R A A

dr
|
| x.l\.l dul dv: du: w1 2
& e - —- CO _— e N ;o

| A TR T VR S ST SO
i

f Henve, using (C14),

. 2

: dix : " dvl du] dv,  du,

-4 DT YR TE T RO (C16)

N d-° ‘ ' ' :

:

' where  K(O)  is the right hand side of (Cl1) and ‘

¥, v, v, 2 ; -

(1 = -2———- t ~ac G o= h 4 — P C 3
R{() R+ Wy cosis R &) R ¢ (€c17) %

To summarize, (C15) and (C16) give us two equations for dvll'dr and dv2/d1 s

TR T RTINS gy TR W ERETYTIY ST TR e T
+

1 1 2 2 _ ;
dz . & a0 - RO i
g'
d dv, i
RO B TR :
Solving these equations by Cramer's rule, we find that : X
: ) : ;
: u N
2y ;
% B R(T) dfl
. i
t dv o} u ! R{(t)u, (1) 2
¥ .1. 2 2 Al
: — = — 7 - (C18) :
:“ o i - o
3
: ! dul duzi R
: [ dv dt |
v i
] ! 2
'-i Uy u, ;
E ‘8
r
’ "_
i il
: 1 8
1 N
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Similarly,

dv R(T)ul(t)

Substituting (Cl17) and the definitions of u, and u into the above,

1 2
we find that
dvl wl w1
N el v, sin(s + 2 7:‘¢T) -, sin s - Wy sin 'y ¢1 ,
and
dv2 W, wl
g7 T-Vpcos s -w, cos(s + 2 R 1) + Wy COs T ot.
Integration of these equations yields
w,R wl R w
Vl(T) = - .3 cos(s + 2 = ¢t1) - w, sin s + s-cos r ot
{C20)
and
w.R w1 R wl
VZ(T) =-Tw, COs s ~ 2w1¢ sin(s + 2 i{'¢T) + 3 sin R ¢T.
(c21)

Substituting (C20) and (C21) and the definitions of v and u, into

(Cl4), we obtain after some manipulation

w2R W, vy R
2w1¢ cos(s + R é1) -~ T, sin(s + ?;'¢T) + = (C22)

*p () = - ¢

Combining (€13) and (C22), we see that the general solution to (Cll) is

given by
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wl w} w,R wl
{ = A COs T i 5 S os(s + —
x (1) A cos o 4+ B sin R 2w1¢ R cos(s m 1)
wl n
= awy sinGs 4 ) +q— . (c23)

the constants in (C23):

sz

= isi L - R
A= isin s + 2w1® cos § 3 N
w2R
B = fcos s - sin s . (C24)
2wl¢

Substituting (C24) into (C23), we obtain after som: manipulation,

A\ w

x(1) = (L - 1w2)sin(s + ?%‘$T) + % (1 - cos 7% $t1). (C25)

Similarly, we may also obtain

w w

y(o) = (v - rwz)cos(s + —ﬁl- 1) + = sin —é &1 . (C26)

o T

Note that the above equations (and also (C8), (C9), and (C10)) hold from
the terminal surface (t = 0) wuntil a transition surface is reached or
the trajectory terminates.

Equation of the Bacrier

We have seen (see Appendix B) that the barrier (boundary of the domain
of contrellability) 1s an optimal trajectory which terminates at the BUP.
We have seen in (C7) above that the boundary of the usedle part (BUP) is

given by s = +S , where 0 < § < v/2 and

cos S = w2/wl . (€c27)
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Because of the symmetry about the y-axis in this problem it suffices to

consider the right barrier, i.e., the one for which s = 5 . In the next

section we show that ¢(1) =1 for s =393 and 0 < 1 1y where 1, is i |
alsc determined. Thus, the equation of the right barrier is given by '

(v - 1w2)sin(S + —1'1) + R(1 - cos —i~1 ), (c28)

x(1) R R

|
|
|
!
!
w w E
¥
!
t

and
w w

1
(2 - tw,)cos(S + = 1) + Rsin =1 . (c29)
2 R R }

—

y(1)

It is not obvious (as Isaacs and others seem to infer) that (C28) and
(C29) are the equations for the involute to a circle. 1It, therefore,
seems appropriate to digress and review some analytic geometry. OQur dis-
cussion follows R. Courant ([12] pp. 280-283 and pp. 307-310).

Consider a curve represented parametrically by x = x(t) , y = y(£)

in the plane. The curvature, « , of this curve at a point is given by

k = do/ds , where tan o = §/§ = (dy/dtz/kdx/dt) . The radius of curvature
is defined by ¢ = 1/k . For a given point on the curve, there is a

circle of curvature corresponding to the point. This circle touches the

curve at the point and there has the same sense of description and the same
curvature as the curve. Its center is called the center of curvature. Con-
gsider the diagram below. At any point (x,y) , the center of curvature,

(£sn) , is given by

T A A " S 4 st I ST T ¢ e e A 7\ 1 LAY T 8 e T

AL
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E=x-psina ,

n=y+npcos a ,

where .

[angent .
& sin o = S S

: AP 2 2
(x,y) j '/f: ty

The locus of such centers of curvature to a curve is called the evolute
of the curve, C . We further call C the involute of its evolute. The
evolute is the "envelope'" of the normals to C . An important fact that
we shall use later is that the tangent to the evolute of a curve is normal
to the curve, i.e., é X + ﬁ ; =0

If we have a curve § = £{{(c) , n = n(o) where o 1is parameter, then

the equations of the involute to this curve are given by
x=g+ (a-ai ,
y=n+ (a- an .
For a circle, represented parame:rically by
(C30)
n=sint,
the involute is given by

Xx=-cos t -t sin t,
(C31)
y=sint -t cos t . :

It is worth noting that all the normals to the curve given by (C3l) are

tangent to the circle (C30). We show the curves below. Another geometric




iﬂm

71

property of involutes that we shall usce is that: let,

5., = distance from A to B,

1
22 = arc length from B to D,
ky = distance from ¢ to D,

where

AB and CD are normals to involute,

Then

Lo+ 2, = 4

1 2 3 (€32)

To show that (C28) and (C29) are the involute to a circle, we must

show that they are of the form (C31). To do this we consider

Y1 Y1
RCOSTI=RCOS (—E1+S—S)

Y1 Y1
= R cos (7(>T + S)cos S + R sinC?{ T+ 8S) sin S .

Considering (C27), we see that

LA w Wy R /7 2 wl
R cos R U R o cos(jz T +8)+ o /wl - v, 51n(7{ T+ 8).
1 1
Thus, (C28) becomes
w w — w w
IR B | LN A N S B |
x(t) - R=- (R - )cos(R T+ 8) + {[% A v, ] (R - ) R T}
1 1 1
Y1
- sin 63{ T+ 8) . (C33)

Similarly,

L A i ¥ P 5 A ) b S AR, A bt Mnm o

R,

h s M, -t Piae e e e
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W W —_—— w W
e 2 . J : ) __B.. 4 2 2 ) _g. ._.l_
vi(i) = (R 1 ) sin (}{ T+ 5) + {[w ", VoWt -, ] (r W) ) R 1}
v
. Cos (-R— T+ 5). (C34)

Considering (C30) and (C31), it is clear that (C33) and (C34) are the
equations of an involute to a circle ot radius R(wz/wl) and with center
x=R, y=0 . The equations of this circlc are

v, v,
- (R—=)Ycos (-=~1+98),
wl R

oy
1

w
[

W w
= R-2) sin (£ 1 +39),
Wl R

3
!

where the involute is unwound from

w w
i G- —~;-[2 - Rt ] <0
R sz Wy 1 2

b Gt W @ B e e Wy (e

ek el

o el - e v P
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To asure that the involute is unwound under all cilrcumstances, we must
show that the quantity in brackets above is always nepative. This follows

from elementary geometry considerations in the above figure.

w . .
xz + (R 2 )Z ~ RT
w
1
or
£ = R W 2. w 2. 0 for all values,
wl 1 2
Transition Surfaces
We recall that
p (1) = sgn A1) (c3)

where A(1) = Py ~ PyX -

Recalling that
x{(1=0) =2 sins, y(rt=0) =2 cos s,

and pl(T = 0) =sins , pz(r =0) =cos s ,

we see that

Also,
ey a %

2 dx
dt y+ P 4t

dA/d1 ‘a—;x-pza

into which we substitute the state and adjoint equations to obtain

w

dA/dT = plwl = w, sin(s + 7% ¢1) with A(t =0Q0) =0 .

1
Integration of the above yields

. R Y1
A(V) = Py {cos s - cos(s + x o1y 1 . (C36)

il

b

i e

P

e a,

S e o Gy
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lbus, ter 0~ 1 = 1 (where 4 will be determined presently),

(1) = s ' (€37)

where § 1is determined by (C27). By the symmetry of the problem, we

concentrate on the right half-plane. Consequently, for 0 < s < S , we

deter—ine 1, as follows: it 1is the first time that A(1) = 0 after

1 = 0 . This happens when

¥y
cos s = cos(s + < Tl)
which 1s precisely when
Y1
2n -5 =g+ T 1
Hence, for 0 < s ~ 8 < m/2 , we have

2R N

LI {(r - s) . (C38)

1
Equation (C38) determines T, such that ¢(1) =1 for 0 < 1< T -
For 1 ~ 1y s we show later that A(1) < 0 and hence ¢(1) = -1. If
trajectories do not terminate before condition (C38) holds then the laiter
gives a transition surface.
For s = § , where cos S = wz/w1 , we have the barrier and hence

¢(1) =1 on this "right barrier" for 0 < 1 < 2R/wl(n - 8). From (C28)

and (C29), we may write the equations of the barrier

“1 Y1

x(t) - R = (& - rwz)cos S sin T + {2 - rwz)sin S - R} cos < T
W) W

y(o) = -{(¢ - Twz)sin S - R} sia Tt L - th)cos S cos 7

kU »

T P A T

A bl P O RULAES ¢ il s
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. { A wl w] . \
x - ! cos —=- n — \ - s - \
( (1) - Ry 2 ! sin o1 i (2 - w,)sin § - R
. ! RN
! Do W) vy S0 ) &3
\ y{(1) / \vsin —E'I cos T 1 \\(Q - 1w2) cos $ /.

The geometric interpretation of (C39) is as follows.

on the barrier at time
Yy = {cos §

which 1s a distance W,

to the origin ( and toward the origin).

through an angle (wl/R)t

point x = R y=0.

1

To determine & point

< S) , we start at the point

(2R/w1)(v - x = 28in S,

on the terminal surface (this is the BUP) and move to a point

along the straight line counecting the first point
We now rotate this latter point
in the negative (clockwise) sense about the

Hence for 0 < (w) /R)u < 2m - 25, the barrier

traces out the curve shown below in Figure Cl.

Figure Cl.

Barrier in Homicidal Chauffeur Game.




70

Cont fnuation of Sojution Past Transition Sur ‘ace and Termination of Barrier

|

Later we show that paths temminating on terminal surface for 0 15 & 5
may all converpge to the same point and hence terminate there (except for the
batticr). The time ot this conveyveace depends on the speed of the Evader,
w, - We orecall that in the lmit as w?~0 the solution approaches that

shown in Figure B2. 1f w, {is small enough, the transition surface beyond
the termination of the barrier may be veached by a trajectory before the
trajectory terminates by reaching the “"focal point." Hence, we consider
extension of the barrier which we know continues until T Details for
other trajectories (if they exist long enough) are si-ilar.

Thus, we consider the continuation of the right barrier past

(wl/R)m1 - 2(r - 8) . From (C8) and (C9), we have

pl('l) = -zin S , p,(ll) = cos S . (C40)

<

From (€25) and (C€26), we obtain

K(ll) = (1 - Ilwz)(—sin S) + R{1 - cos 28),
(c4l)

v(ii,) = (0 - le7)COS § - R sin 25 .

1

Later, we show that ¢(1) = -1 for 1 > T o We assume this for now. The

adjoint equaticns for 1 > 1, are

dp;L vy
N " P ¥ pl(rl) = -sin § ,
dp2 vy
A rai T pz(rl) = cos § .

[T —

PRI PRI P Y

n S 42 3 L WAL e et T4 1 DD MR e

ot

cmm AL T

A e i 0, e - b N e gt $ 8 T
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The solution to the above equatiens Is  (ter 11 2 Y )
!
p](l) = ~gjn(S + N (1 - tl)) s sin ¢,
(Ca2)
!
pz(l) = cos(5 4 T G- 1)) = cos @
The state equacions for 1 > 1y oare
W W
. = - e .y sin (9 4 =2 -1
dx/dy 7Y + D) sin(s 4+ N (1 l') ,
(ca3)
w W
IR = o - a5 (S + —= (
dy/ Tx ot w; W, cos(8 i O l])) R

with initial conditions givea bty (£41). A rather laborjous computation

(we omit the details) yields the solution tu the above as (for 1 » 11) éi ) N
’ ' wl . zf?r o ﬁ;
x(1) = - (& - rwz)sin(S + 7r-{1 - TL)} . .f* ¥
o w V . w i ‘
+ R{2 sin 7% (- rl) -1 - cgs(ZS +-§% {1 - Il))} ,
and : . R ) . ‘__1:' o , ‘ , K it‘\;“ : ._: ‘. ,':
4 - : .
y(r)r= (2 ~,1w2)cas(S + Xi (r - 11))
: ! ! ‘ . .
+ R{2 sin 5= (1 - 1) - sin(@S + G - 11))] . (c4d s

<

We may write equations {C44) as (for = > 11}

! Vi ' ‘
{ x(T) + R /coslif-(r - 11) -sin "y {1 - 11)\ R - 1w¢)(ws;n5)+2R—Rcoszs\
i Z Y - .
! = a 1

<

) 1 . Y1 1{ ' ﬁ
yiry ; \sia _ﬁ'(T - 14) ces = (v - Tl}/ \FL - Iwz)cosS—RsinZS

1

(C45)
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vrousing (04

W \'

Un0) 4 cos ?(;-;.) “in = ( ;\ x(, )+w (1 )cos(l -8} + R
\ R i W 2 .

' ' Y.

\ N i '\' . w] ) k‘] ‘ . ‘ . /

Vv () . \sin l\‘.“\‘-;l) COS g \;—11)_. \ }'Ltl)-wz(.'-ll)sin(z -5) _

(C46)

The most important aspects of the geometvic interpretation of {C45) are

» Yy =20

that rotation is in the positive sense about the point x = -R
‘and the donvelute continucs to unwind. That (C44) dees iundeed trace out

an lovolute may be seen bv writing it in the equivalent form

s

N wq w} L
: () = R = cos(S + — (:
% ,.‘+}\ R = cos(s + R 1])) :
S . 1 3
o S — v, v, vy 3
H{3RL - w/w )T -+ (R0 5 ) Isin(s + = (1 - 1)), :
ot - a wl R R l
ST T v, vy Wy . ; -
y(13 = [-{3R] - (w /w ) - (R =" (s ~Y]eos(5S + = (1 - 1 )) :
:l :
) w2 wl ; . 1
+ R qln(% o (1 - Tl)) ) v (C47)
1 . :
“which is an involute to a circle of radius R(wz/wl) and with center : é
x = -k, y =0 . The involute is unwound from
S S -
( '*R— 1)(R;‘;i ) = -3R¥1 - (wz/wl) + :,'< 0

If we were to try to exntend the barrier given by (C&44) (or any equivalent
Yerm), we would find that the barrier "bends back on  self" as shown by

the dashed line in Figure Cl. llence, by the arguments given ln Appendix B,

the barrier must termingte at e GR/w])(V - 8) .
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We also note that if the barrier werc extended for 1 > 11 , then
the tangent to this curve would be discontinuocus. We denote
dx! .
- + as being the limit as 1 and 1 1. . Similarly for
dt =1 1 -1 ;
|
|
|
dy - We may show that for the barrier we have [
dtr=11. |l
i
[
dx E
TS 1=11— = wl{sin S - (2 - 11w2)/R}cos S, |
dyl _ - ; ’
dtIT=Il wl{sin S (2 1lw2)/R}sin s ., ?
and hence (as we knew before)
;
dy - = tan S .
dx|1=1
1
Also
dx = -y {3 sin S - (L - 1,w,)/Rlcos §
dt =1 1 172 ?
and
| {
I !
dt =1, dt =1 :
- {
Hence 1if Wy > % (causing "focal point" in field of trajectories, i.e.,
the
all paths exceptjbarrier terminate before 1 = 1t ). both dx/dt and i
The '
dy/dt change sign at 11 = o fcurve would "almost have cusp' at T if the !
barrier were extended (except for dy/dx being discontinuous). ]
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The Sinpular Solution (Universal Surface)

Since the Hamiltonian is a linear function of the Pursuer'‘s crutrol

variable ¢ , the maximum principle dees not determine the control when

the cocfticient of ¢ vanishes for a finite interval of time (see Appendix

X m

B). Part of a trajectory for which this occurs is called a singular subarc.

The Hamiltonian is

A\

H{t,x,p;e,w) = ¢>~Rl- (pzx - ply) + wz(pl sin y + p, cos Py +1 - Po¥y
or using (C4), we have
H{t,x,pe,y¢) = tbill-{- (p2x - ply) + wzjr—’—l?+ p22 + 1 - pywy - (C48)
We determine the conditions for a singular subarc from
H = 3H/3¢ = (d/dt)(3H/3¢) = O (C49) )
Recalling that above equation (C36) we had dA/dt = WPy and noting that

IH/ 3 = (-wl/R)(A(t)) , we have from (C49) the following conditions for

the singular surface

J 2 2 i
P, + +1 - Powy = 0

V2P Py ’
]
Y1
] Px-py) =0,
2
1
P1 R ¢
and hence v
pl(t) =0 >
py(t) = —3— >0, (€50)
Y1 7Y
x(t) =0 . {
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The singular control required to yield the above is readily seen to be

. . e [ 2
¢(t) = 0 . Hence recalling (C4), i.e., sin y = pl(t)/ Py + P, ,

we see that y(t) = 0 on the singular subarc. We have not traced paths
which lead to x(t) = 0 btackwards as Isaacs has done ([30] pp. 193 - 194).
The necessary condition for optimality [34] on the singular subarc is also
met since

J d2 dH 2

3@'{ ;;5 ( 36 Vb= () /R)T < 0.

Determination of Capture Criterion

We have discussed in section IIIb of the main text that a very impor-
tant question is whether or not the barrier divides the state space iato
two parts. For the problem at hand, if the barrier does not divide the
state space into two parts, then (it appears as though) capture can occur
from any initial point, i.e., the entire state space is the capture zone.
The only way that the barrier can divide the state space into two parts is
for the "left" and "right" barriers to meet in the y-axis. We now develop
the condition for this to occur.

We consider Figure C2 and recall the relatioaship between two normals
to the involute of a circle given by (C32). When capture can be avoided,
therbarrier\intersects the y-axis. In Figure C2, we have

l Ly = &, ¥+ %

1 2 3°
i.e., the difference in the length of the normals is equal to the distance

(€51)

on the perimeter of the circle (evolute) between points of tangency.
For capture to always occur. i.e., barrier does not intersect or touch
y-axis, we must have

R> 4, . (c52)




Figure C2.

Determination of Capture Criterion.
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We also have
sin $ = &, /R = (2 + L.)/R ,
“ &
or
L, = Rsin § -2 , (C53)
and
b
Ry = R(wzlwl)( 77 8) . (C54)
Now, since (%-— S) = 23wl/(Rw2),we have (also using (C27))
sin(l3w1/(Rw2))=cos S = w2/wl s
and hence
-1
23 = R(wz/wl) sin (wzlwl) {C55)

Combining (C51), (C52), (€53), and (C55), we obtain the condition for the

entire state space to be the capture zone

% > R{V1 - (w2/wl)2 + Guylup) sin'l(wz/wl) -1} (C56)

c¢. The New Geometrical Construction for Optimal Trajectories.

We consider optimal trajectories in the right half-plane for
0 < 7= ZR/wl(n - s) . Background material is to pe found in Appendix
B. For 0 <1< T s we have that ¢(t) =1 for 0 < s < S, and (C25)

and (C26) may be written as

w w

- 1 - . - 1
x(t) ~R= (& th)cos s sin FoTt {(2 Tw2)51n s - Rlcos =T

and

W w

y(t) = -{(2 - Twz)sin s - R}sin 7%-1 + (1-—Tw2)cos s cos 7%—1 s {C57)

e ks

I e iy S v
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which we may write as

for 0 < 5 « § where c¢cos S = w2/w1 and 0~ 13 ¥

1
\
! !
(1) - R cos T T sin ol L - lwz)sin s - R
Y1 Y1
y(r) -sin R U cos {1 ¢ - TWZ)COS s . (Cs8)

The geometric interpretation of (C58) is as follows. To determine 4 point
on an optimal trajectory at time t i_min(l/wz, 2R/w1(n - 8)) (we presently
shall show why addition restriction; see above near (C39) for case of barrier),
we start at the point x = 2 sins , y = £ cos s where s e UP and move
to a second peint which 18 a distance ™, towards the origin along the
straight line connecting the first point to the origin. We now rotate this
second polnt through an angle (wl/R)r in the negative (clockwise) sense
about the point x =R , y =0 .

We have used the above geometric interpretation (C58) to discover in
the homicidal chauffeur game a central field of extremals through a point
on the barrier corresponding to 1 = l/wz. All "primary solution' extremals
{see [30] p. 278) pass through this same point. For O < v < 2/w2 , We
suspect that on any primary trajectory there is no point conjugate to 1t = 0,
but we cannot check this by the Jacobi condition, since the strengthened
Legendre-Clebsch condition is not satisfied, i.e., Huu =0 (see [9] p. 181,
alsc [44] p. 398). The significance of a conjugate point is that the
primary solution terminates at this locus of focal points to the UP of the
terminal surface.

We can, however, investigate the existence of conjugate points by the

use of our gecmetrical construction (C58). Another way of looking at the

o Dt d i bl i

bl o

C o

[

w

|
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conjugate point condition is that Pl,P2 ¢ UP and Pl ¥ P2 yield the same
point on an extremal trajectory, i.e., adjacent extremale intersect. By
consideration of the geometric interpretation of (C58) it is clear that for

P1 and P2 to yleld the same point on an extremal:

(1) they must lie on the same circle with center x =R, y =0,
(2) 1it must be possible to ohtain Pl from P2
rotation about x =R, y = 0 given by

by an appropriate

(L - 1 1 )sin s, - R\ fcos Zl (v,-1,) sin Sl (1,1 )\ (2-1.w.)sin s, - R\
{ 1 - k 2711 R 270\ VT2 %2 i
. w w H
\‘(2 1w )cos sy / ksin ?%'(TZ-TI) cos ?% (12—11,; (- Izwz)cos 8,
(C59)

where T, T > (0 causes a rotation in the negative sense. From (C59) it

is clearly sufficient that T, T )L/w2 . Also if = Ty then it is

necessary that T = R./w2 . This is easily seen by considering (C59) for

! =Ty It reduces to
1 - ¥ 2)sin s, R= (2 - Ty 2)sin Sy = R,
and
(R - 13 2)cos s, = (- Izwz)cos s,
Hence if S1 b Sy 5 We must have ‘1“2 = rﬂwz = £ . Since this is also

sufficient, it suffices to comsider 1 e {t]|% = W, > 0} . Although in
further research we have not been able to prove or disprove intersection of
adjacent extremals for j_l/wz » we have shown the following:

(a) for P, and P, ¢ UP to yield the same point on an extremal

1 2

= l/w2 , it is necessary that T Ty

for 7

L e A 7 o Ak A i




and (k) for Pl and Pz ¢ VP and such that 0 - 5, < 8, < 3 (v yield

the same point vn an extremal, we must have T > Ty

To prove (a) we proceed as follows. For P and P to lie on the

1 2

same clrele, by (€C59) we must have

2

[(¢ - xlwz)sin s, = R]"+ [(2 - 1lw2)cos sl]2 =

1

2 2
[(2 - 12w2)sin Sy - R]“ + [(2 ~ rzwz)cos 32] s
which yields the foliowing quadratic equation for Wy
2 2
w2t - 2t2{w2 - Rw, sin 52) - [2R%(sin s, = sin sl)
- 21,{w, - Rw, sin s.} + w 21 2] = 0
172 2 1 21 ’

whose solution is given by

4 — > 2 -— -—
WaT, = (1 - R 3in 52)"/Qw271 1 + Rsin 52) + 2R(sin Sy sin sl)(L lez).

Noting that when S; = 8, we must have Ty = Ty s We see that the minus

sign 1s extraneous and hence

w

l. 2
2l = (1 - Rsin 52) + /(szl ~ 1 + Rsin 52) + 2R(sin Sy = sin sl)(£ - le2)'

(C60)

Assertion (a) follows from letting 1, = E/w2 in (C60)

1

> 0, we note that for 0 < s, <

To prove (b) for £ - 1w 2 < 8

2 < m/2

we have sin Sy < sin s Hence using (C60) we sege that

I

w212 -1+ R sin 52 < w211 -~ R + R sin 52

!
i

e e e e te it 2
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As stated above, we suspect that adjacent extremals do uot intersect

for 1 < L/w but we have not been able to prove this. We have shown that

2 ’
all extremals which terminate on terminal surface for 0 < s < § pass
through the same point at 1 = R/w2 . lence, all such trajectories (except

the barrier s = S5 ) terminate at this point.

d. Geometry of the Solution.

In this section we summarize the results of analysis by drawing a
picture of the optimal trajectories with the control, ¢ , being indicated
in various regions. The singular subarc, x = 0 , and part of the paths
leading to it {(we have not done this analysis) are also given. As noted above
the entire state space may or mav not be the capture region. From (C536),

we let

o* = R{V1 - (wz/wl)z + (wzlwl)sin_l(wzlwl) -1y . (C62)

Then there are two cases to consider

(1) ¢

|~

2* Dbarrier meets negative y-axis

(2) ¢

v

2* entire state space is capture zone.

In case (1) the Pursuer can only achieve capture for a small portion
of the state space if thz Evader plays properly. This is shown in Figure
C2, in which only the right barrier is shown.

In case (2) the entire state space is the capture zone. Optimal tra-
jectogies for this case are shown in Figure 3. There are two further cases.
For 9./w2 < 2R(m - S)/w1 , paths terminating on UP for 0 < s < S all con-
verge to point A at T = z/wz. This is the case shown in Figure 3. When
£/w2 > 2R(mw ~ S)/wl' such trajectories meet past point B at the end of the

barrier, and there 1s a transition surface between this point and B. As

w, 0 , the trajectories approach those shown in Figure B2.

....»...,._.......__._,___

e ey o,
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Figure C3. Part of Optimal Trajectories for Homicidal Chauffeur Game.
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APPENDIX D, SURVEILLANCE-EVASION CAME.

In this appendix we derive parts of the aniutiom to the survell-
lance-evasion game given by cquation (1) of the maln text. First, we
present details of its soluticn. Next, we discuss our new geometrical
congtruction for optimal trajeciories in this problem. Finally, we
discuss agpecte of the geometry ¢f the soiution and summarize analysis
resulta not given in the main text. A more detailed discussion of many
so2lution steps is to be found in Appendix B (or Appendix C 1if they

occur there).

a. Develeopment of S$xlution.

Hamiltonian, H{t,x,p;¢.¥)

The lamiltonian for the problem glven by equation (1) ot the

main text is given ty

: s s
ch ) - R S Cp (=1
H{t,%,pi¢,9) 1+ pi( R v o+ 52 sin yp) + pZ(R X¢ - ) + s2 cos V),
'BJ* SJ*
where pl(t) = — (k) and p,{(t) == (t) are the duzl variables and
ox 2 Iy
T T
*
J =« max wnin dt = min max | dt. We determinc extremal strategies
sl’¢ Sz.dl(') ")er sly‘t’o
from .
max min H(t,x,p;d,u) =
Sll¢ Sz!w
. -
max {sl[R( pyy + pZX) pzl}, (D2)
-8 a¢
1

and

min {sz(pl sin y+ p, COS )}, (D3)

S,

- 2’

(01)



90

1t is clear trom (D2) (sloce bl(t) = 0) that ¢ 1is given by

-j\t) = s3n .'\(t),

where

A(t) = —plv + Py (D4)

The derermination of 8y is more complicated, and we have to use
results to be established later in this appendix. We parametrically

represent the terminal surface by u  as shown in Figure D1 below.

,]
b I
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. .
s B ‘
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B
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R '
i . .
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a
v
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& o

Figure D1. Terminal Surface for Surveillance-evdasion Game.
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Later we will show that (where 1 =T - t)
R 51
A1) = o {cos u - cos(u + R o1)},
and .
1

pz(T) = ~cos(u + R 91).
Substituting the above into (D2), we ottain

max {sl[% A(r) - pz(T)]}
sl.¢

= max{sl cos u},
<

"1

and thus we see that (where u

-w for - LA u < S
{1 2 2
sl(t) =9
ﬁ 3
Lo for Feu<go (D8)
Next, we consider (D3). To minimize with respect to ¢ it
suffices to consider
f(y) = Py sin yp + p2 cos §
A necessary condition is that
af _ _ _
v =0 = pl cos Y Py sin V¢,
and hence
fan § = pl/pz.
Thus, to minimize f(y¥) we must have
-p -P
sin ¢ = — . cos Y S - R (D9)
Pyt Py Pyt Py

refers to termination conditions)

91

(D5)

(v6)

n7)
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with the minimum value being
m‘in PG = -vpyp t Py < 0,
§

which implies that (D3) is given by

min {s,f()} = min {-s,¥p7 + p2},

Syrv 52
and, hence, we see that

sz(t) = vy (D10)

Boundary Conditions for Dual Variables

We must have ;(t =T) = (pl(T) pz(T)) parallel to the normal,
K, pointing into the state space to the terminal surface (see Figure

>
Dl1). Now, since n = -sin u I - Ccos u }, we have

pl(t = T) = -sin u, p2(t = T) = -cos u. (D11)

Useable Part of Terminal Surface

We have that

- - ->
n = -sin u{ - ¢cosuj,

s ]

L yo + s, sin w)T + (--l X¢ - 5, + 8§, COS W)}
R 2 R 1 2 ’

ket

=(—

where the terminal surface is parametrically represented by u as

shown in Figure Dl above. Hence, we have

x(t =T) =dsinu and y(t =T) =d cos u.

Hence,
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-> T Sl
n+* Xt =T) = (~ ' ¢d cos u + 5, sin ¢) (-sin u)
51
+ (ﬁ" ¢d sin u - sy + 5, cos v) (~cos u),
and when we recall (see (D9)) that i
_pl(tuT) .
sin y(t = T) = ——=——— = sin u , }
2 i
Py * P 3
-p. (£=T) i
cos Pp(t = T) = - — = €coS U , H
P + P3
> -»>
we obtain from n * X(t =T) = 0 that
- > .
n- Xt=7T) = -s, + §) cos u = 0. (D12) g;;
{ 3
Recalling (D8) and (D10), we see that for %-< u < %’ﬂ (D12) is
identically satisfied., For -~ %’< u < %’, we have

- + w, cos u 0
2T ¥ =5

where we also assume v, < vy (otherwise the Evader can always escape

merely by "outrunning" his pursuer). Hence, the useable part of the

N e

terminal surface is given by

UpP = {u|u £us< 27 - U where cos U= w2/wl, 0<UuUsx n/2}, (D13)

We note that this is the complement of the UP in the homicidal

chauffer game (see (C7) in Appendix C).
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The Adjolnt Equations and Their Solution

We have that

S S U

dt ax Py R

e T S U
dt ay P1r *

To integrate backwards from time of escape, T, we introduce the

"backwards time' variable 1 defined by 1 =T - t

dpl Sl

—_— = — =0 -

g Py ] ¢ pl(T 0} sin u,
dp2 s

1 N = =
37 = PL R ) p2(1 0) cos u,

We combine these equations to obtain a second order differential

equation for P, as follows
2
di? T di R P1%R '

or

1% -
F W S T

The solution to the above equation 1s given by

51 !
pl(T) = A cos ﬁ—‘¢T + B sin T 6T,

and obtain

e S
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where the constants, A and B, are determined by
pl(‘[ = 0) = A= -sin u
dp 8 s 8
1 1 Y -0) = - 2
. (t = 0) R ¢B R ¢p2(r 0) g ¢cosu
or B = -cos u.
Hence, after some manipulation, we obtain 3
s; A
pl('l‘) = -sin(u + R ¢T). (D14)
Similarly, it may be shown that
51 .
pz(T) = -cos(u + e 1) . (p15)
- Taking note of equation (D9), we also obtain
sin y = sin(u + 5 $1) and cos Y = cos(u + T é1). {D16) .

Taking account of (D8), we obtain from the above (where u refers to

angle at which escape occurs, see Figure D1)

R v,
for hsu<% and ’—2’-n<u52ﬂ-u where cosly = =
1 -
and 0 < Us 3 '
Y1 Y1
P (1) = -sin(u + 2= ¢1) , p,(r) = -cos(u + = ¢1) , (D17)
and
“1 Y1
sin ¢ = sin(u + R ¢v) , cos Y = cos(u + T ot) (18)




a6
Ty <3
and for z-u-zn
pliT) = -sinu , pz(T) = -cos u, (D19)
and
sin ¢y = sinu , cos Yy = cos u, (D20)
Solution to the State Equations
In the "backwards time' we have
s g .
%% = ii ¢y - s, sin(u + Elwbﬂ x(t = 0) = 4 sin u,
s s
%% - - ﬁl ox + s, = s, cos(u + EL $1) y(t = 0) = d cos u,

The above equations have the same form as the state equations for the

homicidal chauffer problem (see Appendix £). Hence, their solution is

given by
1 R !
x(t) = (d - rsz)sin(u + 'S 1) + ;(1 - cos &= $1), {D21)
and
51 R !
y(t) = d - TSZ)COS(U + T ¢t) + ry sin R ¢t. (D22)

Taking account of (D8), we obtain from the above (where u refers to

angle at which escape occurs, see Figure Dl)
v

for U s u <+ and é-n <uxg?2r~-UW where cos U = 2
2 2 w1
and 0gUuxg %
! R ¥y
x(t) = (d - th)sin(u + x ¢t) + ;(1 - cos Ef-¢r). {D23)
and
Y1 R Y1
y(t) = (d - rwz)cos(u + i—-¢1) + ry sin-§~ ¢t, (D24)

e R e T e i o
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and for Ts u < % m
x{(t) = (@ - Twz)sin u o, y(1)=(d - Twz)cos u. (h25)

We note that equations (D23) and (D24) (and also (D17) and (D18))
hold from the terminal surface (1t = 0) until a transition surface is

reached or the trajectory terminates.

Equation of the Barrier

From the symmetry of problem, we consider the right barrier,

which terminates on the terminal surface with u =%, where 0 <WU < %

and

cos U = w2/w (D26)

1

For u=U and 0<T1TSsT we have ¢(1) = 1 (we show this in the

l’

next section) and the barrier is given by

for 01T

1
! Y1
x(t) = d - th)sin(u + 5= 1) + R(1 - cos = 1), m27)
n a\
and
Y1 Y1
y(t) = (d - Twz)cos(u + T 7) + R sin el (Dz8)
We now consider
v, vy
R cos el R cos (E— T+ u-u
vy v
= Rcos (zm 1 +U)cosU + R sin (=1t + W) sin U .

R r

.

Using the above and (D26), we obtain
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A% W W

1 2 1 Y — Y1
R cos 1 =R~ cos(~—1+UW) + — vV w sin(z= 1t +4),
1 R wl ]

R w 1 wi

which we combine with (D27) to eobtain

Y2 1 R g o 2.Y1 Y1
x(1)-R = -R ;I cos (i v+ WHId - ;I Voul - wz]—(R ;I)E— t}sin(ﬁf-t+ W,
Similarly
W w W, W w
= (R ~2)ysin(-2 R T - S Lo o4+u
y (1) (R w1)e-.in(R T+ U)+{[: wy wi wé} (R wl)R——t}cos(R T+ W),

Recalling (C30) and (C31), we see that the above are the equations of
an involute to a circle of radius R w2/wl and with center x = R,y = (0.

We note that the involute winds in for

d-R V1 JTG;/WI)Z - Wt 20 (D31)
Transition Surfaces
We recall that
¢(t) = sgn A(7), (D4)
where A(1) = “PyY + PyX
Recalling that
x(t =0) =dsinu , y(1=0)=4d cos u,
and pl(r =0) = -ginu , pz(r = () = -cos u,
we see that
A(t = 0) = 0. {(D32)
Also,
dp dp
dA 1 dy 2 dx
dt dar YT PracTaw *TPygrc

'

(n29)

(D30)
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into which w2 substitute the state and adjoint equations to obtain

dA 1
el = g gin(u + — ¢
in(x R 1)

il SCRLIEN with A(r = 0) = 0.

Integration of the above ylelds
R 1
A(r) = E'{cos u - cosu + gt Y} (D33)

Recalling (D8) and noting that for the escape paths terminating with

%>< u < % 7 the Pursuer uses sl(t) = (), we see that in this range

there is no transition surface since A(r) = 0 for all time. Hence,

we consider only paths for which there is a transition surface, i.e.,

Ugu <+ and 3 n <us 2t - W In this range of u by (D8) we have

2 2
Sy =W, and (D33) becomes
R Y1
A(1) = ry {cos u - cos(u + S 1)} (D34)

(where we determine 1 below),

Thus, for 0 <1< 71 1

1

+1 for W g u < %

(1) =

1 ofor Jmcuza-y (D35)
where U is given by (D26). By the symmetry of the problem we concen-

trate on the right half-plane. Consequently, for U <uc< Ey we

determine T, as follows: it is the first time that A(t) = 0 after

7 = 0. This happens when

w

1
cos u = cos(u + R rl)

which 1s precisely when

e ograran

e e
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Heuce, for W g y < -, we have

rol

A )

= (r - u). (D36)
1

—
k>

It appears as though all trajectories except the barrier (u = W)
terminate before this time, however, because of intersection of

adjacent extremals. Hence, equation (D36) becomes

o= R G, (D37)
1 wl

where W 1ig given by (D26). For T > 7 we show later that A(t) < O

ll
and hence ¢(r) - ~1. We finally note that (D37) holds only if the

. barrier doesn't terminate before this time is reached.

Termination of the Barrier

| A fundamental difference between the homicidal chauffer game
and the surveillance-evasion game is that in the latter the barrier may
terminate abruptly before the transition given by (D37) occurs, We
recall (see Appendix C) that in the homicidal chauffer game the barrier
"terminated when 4(1) changed from +1 to -1. In the surveillance-

evasion game we shall see that for
‘1 = (w Jw )2 -u
d <R {¥1 (wz/wl) + Xw2/w1Xﬂ )y, (D38)
the barrier terminates at
T, = (d - R sin U)/wz. (D39)

We have investigated many aspects of this phenomena and will detail our

findings here.

20 et e
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What led us to our findings was a statement by Dobbie [14] which
we found to be incorrect., Let us conslder Figure 5 of the main text.
Dolbie ([14] p. 176) states that the (right) barrier can be tangent to
the line through 0 and D' (if d 1is small enough). This was found
to be incorrect. Let ¥V be a unit vector parallel to line connecting

1

0 and D' and ;2 tobe aunit vector orthogonal to ;1' Thus

31 = sin U - cosu 3,
;2 = cos ul+ sin L&}. (D40)
We show below that there is a transition from ¢ =1 to ¢ = -1, 1i.e,.
A(t) changes from positive to negative, at Ty = 2R{w - U)/wl. Now
\?{,wg will show that we always have
s Qu;F;
(dX -
lﬁ? TV s o, (D41)
fr=1y

i.e., the tangent to the barrier is orthogonal to the line through O

>

and D' at 1 = 1,. Also, [Q&] +v =0 only for d - t,w, = R sin U,
1 d1 =1, 2 172

dX N .
Fra 0. Hence the barrier can never be tangent to

when we have that
this line. We should note that for =t = T, our new geometric construc-
tion (discussed below) shows that the point (x(rl),y(rl)) of the
barrier always lies on the line through 0 and D' (if we ignore

termination).

To prove (D4l) we consider (1) of the main text at T, ZR/wl(n - W

dx | Y1
~—J = (d - lez)cos W-w, sin 2 W + w,sin U,
T

dtj _ R 1 )
and 1
dy Y1
= — - k . . _ . Z
{dT]TzT R (d rlw2)51n u + wl cos 2 U wzgos u, (D42)

o~

-
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s W g A 2 W Pt W . I o (P e it



102

where we have also used (D27) and (D28B)., Now

4% LS
(d1,1$1 v ‘dl!T=1
1 1 B 1

which use of (D42) and some manipulation shows to be equal to w

2
7u1 cos U ~ 0, and hence (D41) is proved.
The second statement we prove similarly

‘ '[45 . ; = g-)*LI cos +_ig!] sin U

! (dr,Tx{ 2 at, oo 0T er

.- 1 N . o 1

or, o

©{ax) |

2 . ldTJT=T vz R {d lez - R sin U}, (D43)

’ ‘-,f“ 1 L e

3

: . o >
" where we have used (D42) aad simplified. Thus, {Q&] i v, =0
N - dr =Ty 2
for d ~'riw2 = R sin L. If we substitute this latter condition imto

(D42) we rind that - L
V Lo T{E&] - { S
- Nl R »k sin U —wl cos L w2 s
o T
and '
1 a
' . [QX] = cos Wiw, cosu - w,} =0.
e dU . 1 2
1

Let 1.5 now discuss how when (D38) holds the barrier has a cusp
an T -_T2 wiven by (139). We obtained several clues bty considering
our new geomelric interpretation of the solution to the state equations,

which we now dizcuss. The eguations of the barrier {D27) and (D28) may

be writren as

LR SRy PR

et 6 SR

ER)

JEFRYS e

Iabir coomcb gt 1t 2hehedep § 144D
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Y1 Y1

x(1)-R = (d - TWZ)COS U sin gt {( - rwz)sin U - Rlcos L

and
v, v,

y(1) = -{(d - Twz)sin W - R}sin "E + (d - 1w2)cos‘1 cos * T,

which we may write as
for 01« T
Y1 Y1,
x(1)- R e T sin §T<T [(d - Twz;sin W -R
) Y1 Vi
y(t) -sin = 1 cos P& T d - Twz)cos u . (D44)

Let us consider Figure 5 of the main text. To determine a point on the
right barrier at time 1 = 2R/wl(n -VU), we start at point A at the
boundary of the detection region and move to a point which is a distance
™, away from A along the straight line OA. We now rotate this

\'4

ﬁl T 1in the negative (clockwise) sense about

point through an angle

the point x = R,y = (.
Some further remarks seem appropriate. When 1 = ry we rotate

through an angle 27 - 2U  in the negative sense or an angle of 2U

in the positive seuse. Hence, any point on the stvaight line through

0 and A 1is carried to the line through 0 and D'. Hence, our remark

about a point of the barrier being on 0OD' at <t = - We also see

the suggestion of anomalous behavior if the point moving along OA

passes the point of tangency to the circle of radius sz/w1 and center

x = R,y = 0. If this occurs the geometry of the situation tells us that

the point of the barrier for t = 1, lies on OD' above D' toward

S P e e e

r——

B P

e T amm  Apn R= - ———

s v




the boundary of the detection region. As the point moves along OA

toward 0 before rotation we see that

(a) when it is above the point of tangency to the circle,
the resultant point (after rotation) is moving toward
this circle,

(b) when it is at the point of tangency, the resultant point
is on the circle of radius sz/wl,

and (c) when it moves past the point of tangency for 1 < Ty
the resultant point moves away from the circle.
'Iggain we note that this Is because the construction rotates the point
.ébout x = R,y = 0.
| :"A]gebraically, we can see the above approach and recession by

considering (044) from which we can obtain the square of the distance,

cdenoted by D(t), of a peint on the barrier at t from x = R,y =0
D(1) = (x{ti- R)? + y2(r) = (d =~ ™, = R)2 + 2R(1 - sin W) -~ 1w,).

Hence, for the minimum of D(v}, we must necessarily have Q%éll. = 0,
which yields

T, = (d - R sin u)/wz. (D43)

This value of 1 does indeed yield a minimum since %%g = 2(w2)2 > 0.
Hence, we suggest that the barrier has a cusp at such a point,
if it occurs. Let us further note that such behavior can occur on any
optimal trajectory terminating on the boundary of the detection region
for W < u < %. Thus, it appears that a trajectory terminating at a
point P on the boundary (if d is right) similarly approaches and

receeds from the circle to which OP is tangent. We have not had time
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to explore this further. Let us note that this doesn't occur for

"
u = 7 We note that for 7 to occur before 1 we must have

2 1

d - R sin Yy < 2R w2(n - U)/wl
or
d < R{sin U + 2 wz(ﬂ - U)/wl

which by (D26) is precisely the condition given by (D38).
Now that we are suspicious that if (D38) holds, the barrier

has a cusp in it if it doesn't terminate at =1 let us prove the

2’
_existence of the cusp algebraically before we plot the curve of the

barrier, Differentiating (D23), we obtain

d Y1 Y1 Y1 “1
2 sin(u + X T)+‘§~ {(d ~ rwz)cos(11+ e )+ R s8in ' T},

X
= m

~dr

'Noting that

w w

1 1
—wzsin(u+ ' )+ Wy sin(R— T4+ U-Ww

w w

Y1
-, sin(U + R )+ W, R 1

Y1
= -, ’S(E— T+ W) sin U,

where we have used (D26), we see that (D46) is equal to

W
dx
X o

dt 1

sin(U + 1 t)cos b - w cos(ﬁl t + Wsin U

cos (U + R—l 1) {sin¥-(d = t w,)/R}. (D47)

(D46)

e G

P —

PPy
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w
d
a{~= Wy sin(u + El T){sin U -(d - Twz)/R}, (D48)
and hence
w
dy | _ _1
. tan(u + R ). (D49)
dy u
Thus, we see that ax is continuous at T = T, = (d - R sin )/wz.
but both dx and gx-= 0 at = and change sign a asses
a0 ar T T, an nge sign as 1T passe

through T, Hence, the barrier curve y = y(x) has a cusp at 1 = Ty
Thus, the barrier must terminate (see Appendix B for discussion) and
(D38) and (D39) have been proved.

Another way to see this is to consider (D29) and (D30). From the
discussion of the involute in Appendix C, we see that the involute
winds in for

w, W

d - R =G ? = (R -‘f)(R—l 1) = 0.

Therefore 1f

R
T, == 2(r - W),
1 wl

doesn't occur before the involute touches the circle with radius

R wzlwl, the involute starts to unwind. But for this to hold, (D38)
follows immediately. We note that the involute unwinds for

w, W
{td - I ?] - ® DL 0) <o
wl R
Figure D2 shows the cusp which would occur if barrier didn't

terminate. The values of parameters which were used to calculate the

curve are shown on the figure.
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d= 10 n

Figure D2. Occurrence of Cusp if Barrier Does Not Terminate.
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Continuation of Solutjon Past Transition Point
1t may be shown that when barrier does mot terminate (see (D38))
other extremals intersect before 1 = 1 and hence terminate, so we

1
the
conslder just'(right) barrier. From (D17), we have

- o - U
pl(rl) sinu pz(rl) cos U,

From (D27) and (D28), we obtain

x(xl) = (d - rlwz)(—sin ) + R(1 - cos 2 W),
H
' = - wo- b,
........ . y(rl) G| rlwz) cos R sin 2 {50)
Later, we show that ¢(t) = -1 for =t > Tl. We assume this for now.
" The adjoint equations for 1 > T, are
dp
o T P /R R () = sieu,
dp2
e plwl/R pZ(Tl) = -cos U .

The solution to the ahove equations is (for T > T,)

Y1
pl(T) = sin(U + §~(T - rl)) = -gin ¥,

w
P, (1) = =cos (U + EL(T - 1)) = -cos Y. (51)

The state equations for Tt > ™ are

PR DTy TN




M

w

dx 1

dt R

W
dy 1
ot TR *TW

with initial conditions given by (D50).

=———y+w2
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!
sin(U + i—(‘r - ’l’l))-
Y1
cos(Uu + R—"(T - Il))'

2

A rather laborious computation

(we omit the details) yields the solution to the above as (for 1 > Tl)

x(t) = -(d - Twz)sin(u.+ R—l (t - 1

w

w

)

w

+ R{2 cos El—(r - 'rl)— 1 - cos(2U + 'I-{l(T - rl))},

and

y(t) = (d - Twz)cos(u + ﬁ—l-(T -

w

+ R(2 sin -R—1<T - 7)) sin(2 U + —ﬁl(r - DL

We may write equations (D52) as

Y1
x(1)+R cos i—(T"Tl) U -sin
y (1) (sin g=(r-1)) cos
or using (D50)
Y1
[x('r)+R cos -li—(T—Tl) -sin
S I
y{(t) sin E‘(T—Tl) cos

w

Tl))
w

(52)

(for T > rl)

;'L(T'Tl) (d-tw,) (-sin U)+ 2R - R cos 2u
"1

?(T_Tl) (d-rwz)cos U - R sin 24

! m

ﬁ—(r—rl) x(11)+ wz(r—tl)cos(i - U +R
E(‘P-T ) [ b ~ > -

R 1 j(‘rl)—wz(T tl)sin(z u) .

{D53)

(D54)
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The most important aspects of the geometric interpretation of
(D54) are that rotation is in the positive (counter-clockwise) sense
about the point x = -R,y = 0 and the involute unwinds. That (D32)

does indeed trace out an involute may be seen by writing 1t in the

equivalent form

Y2 Y1
x(1) + R = R —= cos(U+ (v - 1.))
wl R 1
w 2 w w W
+ {0 -3 - )+ R D@ L) sin(U+=2(x - 1)),
w W R R 1
1 1
W, 2 w w w
y(0) = = 3RA -2 @) + R 2y DyJeos (U + 2E(r - 1.))
wl wl R R 1
Y2 Y1
< . U —_ -
+ R ) sin(W + R (T Tl)), (D55)
Y2
‘which 1is' the involute to a circle of radius R — and with center

Y1
Xx = -R,y = 0,

Shape of the Surveillance Region

1

When a surveillance region does exist, it wmay take on one of two
shapes depending on whether or not the barrier terninates by intersect-
ing the negative y-axls., These two possibilities are shown in Figure
5 and 6 in the main text where further detalls are given. We develop

here the condition for the barrier to look like that shown in Figure 6.

d = R{v1 —(w2/w157'+(w2/w1)( % T~ W+ 1}, (D56)

o it -
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which we may also write as

- -l.-.
d = R{vV1 (wz/wl)z +(w2/w1)sin ( w2/w1)+ 1},
where

T sin~l(-w2/wl) < 3/2 n.

(C32) (see Appendix C). In Figure D3, we have

El + 22 - 23 s

“When the barrier intersects the negative y-axis we have

R &

1
We also have
23 = d - 24 or
23 = d - R sin U,
and
22 = R wzlwl a,
where

2(r =W =a+ B or a=21 - 2u~(r/2 ~W),

o= 3/2 m -,

111

(D57)

We consider Figure D3 (which isn't drawn to scale) and recall the

relationship between two normals to the invclute of a circle given by

(p58)

i.e., the difference in the length of the normals is equal to the distance

on the perimeter of the circle (evolute) between the points of tangency.

(D59)

(D60)

(D61)

(D62)
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Petermination of Tangency Condition

Figure D3.
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Comtiuing (D58), (D54), (D6O), (D6L), and (D62), yields
R + R(wszf(B/Z " -uW sd-Rsin U, {63}

which by use of (D26) is seen to be (D56). No.ing that

w, £
1 72
v, R (3/2n-1u),
we see that
w, %
1 72
sin(w2 R ) - ¢cos U = — wzlwl,

and hence
%, ={Rw, /w )sin_l(—w fw.)
2 21 A R

which leads to (D57).

Absence of Singular Solution

Unlike the problems considered in Appendices B and C, there does

not appear to be a singular solution to this problem.

AAnother Way to Determine UP
We have seen (see Appendix B) that the useable part of the terminal
-
surface may be determined from X . ; < 0, where ; is a unit normal
vector to the terminal surface and points into the state space. Another
criterion used by Isaacs ([30] p. 239) in a capture game is that the

UP is determined by %:(rz) < 0, where x2 + y2 = r2, For the escape

problem at hand, this condition becomes

~

U

-
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(r r) =0, (D64 )

[We pote that this condition is examined only on the terminal surface
dan! that eptimal stratepies are not determined by the rate of change
ol range as one might ionter trom Dobbie [14) pp. 175-176 (see [30]
P 2005=206) )

Using (1} and (L19), we obtain from (D64)

wz(x sin y + v cos y)- s =0, (D65)
which becomes tor 1 = 0 and using (D20)
dwz(sin? u + cos’ u) = sld cos u, O
whence letving t}l = wl
W, = W, cos uzx0, (D66)
s -

which 1s the same result as from X r n g 0.

b. The New Geometrical Comstcruction for Oprimal Trajectories.
We consider optimal trajectories in the right halt-~plane for

01 = s ZR/w](ﬂ - wu) and U £u < 7/2, cos U= wz/w Background

1

material is to be found in Appendix B, For Ot <7 we have that

l’

¢{z) = 1, and by (D23) and (D24} we have

w
x(1) - K= (d ~ :uz)EOS u sin Rl 1+ {(d - 1w2)sin u - R}cos Ki T,
and
W, Wy
y(u) = - {d - 1w2)sin u - Rlsin gt d - Twz)cos W ocos T, (D67)
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which we may write as
for W < u < n/2 where cos U = wz/w1 and 0 £ 1 & 1
vy W,
{x(1)~ R cos 5 sin §~”q (d - 1w2)51n u - R |
3
Y1 Y1
y() | {~sin i cos 1 da - Iwz)cos u (D68)

Equation (D68) appears in the main text as (3). The geometric interpre-

tation of these equations follows equation (3) in the main text.
Considering the geometric interpretation of (D68), we see that

the Involute winds in, il.e., radius of curvature decreases with

increasing 1, for 0 <1 < Ty Further geometric investigations

have shown tnat ueighboring extremals Intersect (see Figure 3). This

means that cn z2a extremal there is a point conjugate te 1 =0 and

that the trajectory terminates here (except for the barrier). Time has

not permitted this to be more fully investigated.

c. Ceometry of the Solution,

This topic is discussed in section 111d of the main te:t.
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APPLENDIX L
SOME. ALLOCATION OF SEARCH EFFORT RESULTS
BY THi PONTRYAGIN MAXDIM PRINCIPLE

A major problem in Naval warfare i the search for targets at sea.
Hence, the optimum allocation of search effort is of interest in developing
tactics. We show in this appendix that sowme well-known results in the
optimum allocation of search effeort may be more easily obtained by appli-
cation of the Pontryagin maximum principle {43] sad the "sharpness' of
the results extended slightly. We begin by reviewing briefly the litera-
ture,

Koopman wrote the first major work on search theory [35], which was
for a leng time classified (until May ié, 1%61). It still remains a
major work, especially remarkable for contgining many of the concepts for
research being performed 20 years later. Som exgmples: formulation of non-
linear programming problem for searching ocean aress, Bayesian approach to
sequential search. Later, Professor Koopman édbi;sned sews éf these results
in the cpen literature {36], [37], [38]. In jBB}, Koopran 59};;§_tbe problem
for a continuous, one-dimensional modsl 9; Eﬁé qp%imgwrﬁﬁgﬁij§%;iép of seérch
density when the conditional probability‘qi detectiug éhe target is exponey s
tial. However, it should be noted thau‘ﬁhép:s; i of [35] contiins much Kﬂ[
material not in [38]. For example, in [3*1 Xoopman first solves a discrete
problem of searching effort, discusses the pnysical interpretation of varijous
quantities and the structure of the sciution, and tnen extends this to the
case where targets are continuously distributed (two-dimensiowal).

Charnes and Cooper [10] z:xtended [38] by formulating a nou-linear

programming model for searching discrete alternatives. They sclved this
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model by applying the Kubn-Tucker conditions. De Guenin [13] extended
Koopman's results [38] by considering the optimum distribution of search
density for a general conditional probability of target detection (he
assumed this to be a concave function of scarch density).

We now derive the solutien to Koopman's problem [38] and de Guenin's
[13] by the maximum principle. The reader is directed to these papers for
model formulation. Even though Koopman's problem is a special case of

de Guenin's, there still appears to be methodological value in considering

it first.

a. Koopman's Problem.

The problem studied by Koopman may be stated as to maximize target
detection probability when there is a restriction on the total amount of

search effort available. Mathematically, the problem may be stated as

maximize J px){1 - e_¢(x)] dx
¢ =00

subject to: J ¢(x) dx = ¢ ,

and ¢(x) > 0, : (E1)

where
p(x)dx = Prob[target located between x and x + dx ] ,
-¢ (x) . .
1 -e = Prot[detect ta.get with effort ¢(x)]Larget located at x } ,
¢ (%) is search density and defines the distribution of search effore,

and ¢ 1s total search effort.

-
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We note that J pfx) dx =1 and p(x) >0 .

We now consider the following egquivalent optimal control problem:

maximize j p(x){1 - em¢(x)} dx ,
"h —

subject to: dy/dx = ¢ (x) ,
where ¢(x)y > 0,
and y(x = =) =0 and y(x = +=) = ¢ (E2)

The Hamiltonian for this problem is

-¢ (X)}

H(x,y,2,¢) = p(x){1 - e + Apx) , (E3)

where A 1is the dual variable corresponding to the state equation.

e—¢ (x) }dx ,

Defining J* as equal to max J p(x){1 - we see that

¢

A= 3J%/3y < 0 ,

X
J ¢(x) dx) and by expending

-—00

since v(x) 1is cumulative effort (y(x)

more effort than is optimal we can do nothing but reduce the optimum target

detection probability. By the coundition

di o H

_—= —— o

dx 3y ,

we sre that X (x) 1s a constant.
The optimum distribution of search effort is found by maximizing the

Hamiltonian with respect to the control variable ¢ , which is the seaxch
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density. To facilitate a later argument, we let
Then, the Hamiltonian 1s maximized by

9H/9¢ = p(x)e~¢(x) -p =20 for
or

al/3¢ < 0 for o(x) =0 .

Since BZH/8¢Z = —p(x)e_¢(x) <0 for all x

sufficient conditions for a global maximum are satisfied, i.e., H(¢) {is

concave. Thus, we see that the optimum distribution of search effort is

determined as follows:

{(a) for p(x) <y, ¢(x) =0, since then p(x)e‘¢(x) < u or
() for p() > y, $(x) = tn(pGx)/u) , since pix)e ) <y
dH/3¢ = O
We determine . as follows. Define £ = {x|p(x) > )} . Then u
so that
[g tnp(x)/u)dx = Jm ¢{x)dx = ¢

When the appropriate sufficlent conditions (see [9] pp. 181-182) are checkead,

i.e. strengthened Weierstrass, strenghened Legendre, aud Jacobi, it is found

that (E4) is both necessary and sufficient.

b. De Guenin's Problem.

Here, we consider a more general conditional probtability of target i

detection. The problem is

¢(x) > 0

A e~

where u > 0 . !

and ¢(x) < » , we see that

e am t s s nde
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maximize j pCOh($(x))dx
< v}
subject to: J g (x)dx = ¢
and ¢(x) >0, (E3)

where p(x) , #(x), and ¢ arc defined as before and
h(:(x)) = Probldetect target with offort ¢(x)|target is at x ]

De Guenin further assumes that h($) 1is concave with h'(4 = 0) 0

1
i.e., W'($) = dh/d¢ 1is marginal return of conditional detection probability
with search effort. Diminishing returns may be stated as h'($) < 0 with

dh/dd (¢ = 0) > 0 and dh/de (& = =) = 0 , It is noted that the condition
-1

W' ($) < 0 for all ¢ implies that the inverse of h'(¢), 1.e. h' ~ , is
well-defined.
Again, we consider an equivalent optimal control problem:
maximize I pOh(p{x)) dx ,
. o o
subject to: dy/dx = ¢(x) ,
vhere ¢(x) > 0
and y(x = =») = 0 and y(x = +=) = ¢ (E6)
The Hamiltonian for this problem is
Hix,y,2,¢) = p()h{¢(x)) + A¢(x) (E7)
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where, as before, the dual variable, X , will turn out to be negative
A= 39J%/3y < 0O
As before,
dr/dx = -3H/3y = 0 ,

so the dual variable is a constant, which we, for convenience, set equal to
-p where u » 0 . Maximization of the Hamiltonian with respect to the

control variable ¢ 1is determined by

3H/3¢ = p(x)h'(¢) —w =0 for o(x) > 0,
or

aH/34 < O for $(x) =0,

which is sufficient for a giobal maximum, since

32H/3¢2 = p(x)h"(¢) < 0 for all x and $(x)

We determine the desired search density, ¢ , as follows:

0 , since then %g < 0,
$=0

#

(a) for pxdh'(¢ = 0) < u, ¢(x)

(5) for p(Ih'(d = 0) > u, o(x) 11'A1(1x/p(><)) » since h'(e) = u/p(x)

3H -
yields 2 0, (E3)

where u 1ic determined similarly to the previcus case. It 1s easily shown
that (E8) are both necessary and sufficient for the optimum distribution

of search effort, Thus, we have shown chat de Guenir's results are also

sufficient for the determination of optimum search effort.
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¢.o Extensions.

Here, we mention some extenslons of efther analysis or models to the
above. Tt can be shown that the above results may be developed strictly
within the framework of the classical calculus of variations (and in a
different way than reported in the literature) but this analysis has not
been completely documented at this time. Besides the trivial extension to
h = h(x,s{(x)) , alreadv noted by de Guenin, we may extend the maximum

principle approach to some cases where h(¢) 1s not concave.
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speed limitation. Conditions are developed for the Pursuer to be able to
waintain contact indoliniicly. The ro-nles ~¥ +%ig research modify previously ]
published results on this pioblem. Shortcomings of previdus work are 5.
¥
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discussed including the fact that the surveillance-evasion problem has not

been solved for an arbitrary detection regilon. Related parts of the solution
to Isaacs' homicidal chauffeur game and its one-sided csinterpart are developed
as background material. Some known allocation of effort in search theory

‘ results are derived by the Pontryagin maximum principle.
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